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The 2019 novel coronavirus (2019-nCoV; severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2)) 
has spread rapi dly since its recent identification in 
patients with severe pneumonia in Wuhan, China. As 
of 10 February 2020, 2019-nCoV has been reported in 
25 countries across 4 continents and >40,000 cases have 
been confirmed, with an estimated mortality risk of ~2%.

Unfortunately, no drug or vaccine has yet been 
approved to treat human coronaviruses. Several options 
can be envisaged to control or prevent emerging infec-
tions of 2019-nCoV, including vaccines, monoclonal 
antibodies, oligonucleotide-based therapies, peptides, 
interferon therapies and small-molecule drugs. However, 
new interventions are likely to require months to years to 
develop. Given the urgency of the 2019-nCoV outbreak, 
we focus here on the potential to repurpose existing 
antiviral agents approved or in development for treating 
infections caused by HIV, hepatitis B virus (HBV), hepa-
titis C virus (HCV) and influenza1, based on thera peutic 
experience with two other infections caused by human 
coronaviruses: severe acute respiratory syndrome (SARS)  
and Middle East respiratory syndrome (MERS).

Characteristics of 2019-nCoV
2019-nCoV is an enveloped, positive-sense, single-stranded  
RNA beta-coronavirus. Similar to SARS and MERS, the 
2019-nCoV genome encodes non-structural proteins 
(such as 3-chymotrypsin-like protease, papain-like pro-
tease, helicase, and RNA-dependent RNA polymerase), 
structural proteins (such as spike glycoprotein) and acces-
sory proteins (Online Fig. 1). The four non-structural 
proteins mentioned above are key enzymes in the viral 
life cycle, and the spike glycoprotein is indispensable for 
virus–cell receptor interactions during viral entry2. These 
five proteins were therefore recognized as attractive targets 
to develop antiviral agents against SARS and MERS2.

Initial analyses of genomic sequences from 2019-nCoV 
indicate that the catalytic sites of the four 2019-nCoV 
enzymes that could represent antiviral targets are highly 
conserved, and share a high level of sequence similar-
ity with the corresponding SARS and MERS enzymes3. 
Furthermore, protein structural analyses suggest that key 

drug-binding pockets in viral enzymes are probably con-
served across 2019-nCoV, SARS and MERS3. It is, therefore, 
reasonable to consider repurposing existing MERS and 
SARS inhibitors for 2019-nCoV. Below, we discuss selected 
candidates with a focus on approved drugs or experimen-
tal agents that have been already tested in clinical trials for 
other diseases4. Supplementary Table 1 provides a longer 
list of anti-coronavirus agents, including preclinical com-
pounds that could be considered for screening or starting 
points for optimizing antiviral agents against 2019-nCoV.

Potential repurposing candidates for 2019-nCoV
Virally targeted agents. Approved nucleoside analogues 
(favipiravir and ribavirin) and experimental nucleo-
side analogues (remdesivir and galidesivir) may have 
potential against 2019-nCoV. Nucleoside analogues in 
the form of adenine or guanine derivatives target the 
RNA-dependent RNA polymerase and block viral RNA 
synthesis in a broad spectrum of RNA viruses, including 
human coronaviruses4. Favipiravir (T-705), a guanine 
analogue approved for influenza treatment, can effectively 
inhibit the RNA-dependent RNA polymerase of RNA 
viruses such as influenza, Ebola, yellow fever, chikun-
gunya, norovirus and enterovirus4, and a recent study 
reported its activity against 2019-nCoV (EC50 = 61.88 μM 
in Vero E6 cells)5. Patients with 2019-nCoV are being 
recruited in randomized trials to evaluate the efficacy of 
favipiravir plus interferon-α (ChiCTR2000029600) and 
favipiravir plus baloxavir marboxil (an approved influ-
enza inhibitor targeting the cap-dependent endonuclease) 
(ChiCTR2000029544). Ribavirin is a guanine derivative 
approved for treating HCV and respiratory syncytial virus 
(RSV) that has been evaluated in patients with SARS and 
MERS, but its side effects such as anaemia may be severe 
at high doses2 and whether it offers sufficient potency 
against 2019-nCoV is uncertain. Remdesivir (GS-5734) 
is a phosphoramidate prodrug of an adenine derivative 
with a chemical structure similar to that of tenofovir 
alafenamide, an approved HIV reverse transcriptase 
inhibitor. Remdesivir has broad-spectrum activities 
against RNA viruses such as MERS and SARS in cell cul-
tures and animal models, and has been tested in a clinical 
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trial for Ebola. A recent study reported that remdesivir 
inhibited 2019-nCoV (EC50 = 0.77 μM in Vero E6 cells)5, 
and a US patient with 2019-nCoV recovered after receiv-
ing intravenous remdesivir in January6. Two phase III 
trials were initiated in early February to evaluate intrave-
nous remdesivir (200 mg on day 1 and 100 mg once daily 
for 9 days) in patients with 2019-nCoV (NCT04252664 
and NCT04257656), with estimated completion dates 
in April 2020. Galidesivir (BCX4430), an adenosine 
analogue that was originally developed for HCV, is cur-
rently in early-stage clinical studies evaluating its safety in 
healthy subjects and its efficacy against yellow fever, and 
has shown antiviral activities in preclinical studies against 
many RNA viruses, including SARS and MERS2.

Approved protease inhibitors including disulfiram, 
lopinavir and ritonavir have been reported to be active 
against SARS and MERS. Disulfiram, an approved drug 
to treat alcohol dependence, has been reported to inhibit 
the papain-like protease of MERS and SARS in cell cul-
tures (Supplementary Table 1), but clinical evidence is 
lacking. Clinical trials (for example, ChiCTR2000029539) 
have been initiated to test HIV protease inhibitors such as 
lopinavir and ritonavir in patients infected with 2019-nCoV. 
Lopinavir and ritonavir were initially hypothesized to inhi-
bit the 3-chymotrypsin-like protease of SARS and MERS, 
and appeared to be associated with improved clinical out-
comes of patients with SARS in a non-randomized open- 
label trial2. However, it is debatable whether HIV protease 
inhibitors could effectively inhibit the 3-chymotrypsin-like 
and papain-like proteases of 2019-nCoV. HIV protease 
belongs to the aspartic protease family, whereas the two 
coronavirus proteases are from the cysteine protease family. 
Furthermore, HIV protease inhibitors were specifically 
optimized to fit the C2 symmetry in the catalytic site of 
the HIV protease dimer, but this C2-symmetric pocket is 
absent in coronavirus proteases. If HIV protease inhibitors 
alter host pathways to indirectly interfere with  coronavirus 
infections, their potency remains a concern.

The spike glycoprotein is also a promising target. 
Griffithsin, a red-alga-derived lectin, binds to oligosaccha-
rides on the surface of various viral glycoproteins, including 
HIV glycoprotein 120 and SARS-CoV spike glyco protein2. 
Griffithsin has been tested in phase I studies as a gel or an 
enema for HIV prevention, but the potency and delivery 
systems of spike inhibitors should be re-evaluated for the 
treatment or prevention of 2019-nCoV.

Host-targeted agents. Pegylated interferon alfa-2a and 
-2b, approved for the treatment of HBV and HCV, could 
be used to stimulate innate antiviral responses in patients 
infected with 2019-nCoV, and trials involving interferons 
have been initiated, such as a trial testing the approved 
anti-HCV combination of a pegylated interferon plus 
ribavirin (ChiCTR2000029387). However, it is unclear 
whether a pegylated interferon and a nucleoside com-
pound could act synergistically against 2019-nCoV. 
Owing to multiple adverse effects associated with subcu-
taneous interferon therapies, their evaluation should be 
closely monitored and dose reduction or discontinuation 
of therapy may be required.

Small-molecule agents approved for other human 
diseases may modulate the virus–host interactions of 

2019-nCoV. An approved immune modulator, chloro-
quine, shows inhibitory effects against 2019-nCoV 
(EC50 = 1.13 μM in Vero E6 cells)5 and is being evaluated in 
an open-label trial (ChiCTR2000029609). Nitazoxanide, 
approved for diarrhea treatment, could also inhibit 2019-
nCoV (EC50 = 2.12 μM in Vero E6 cells)5. The antiviral effi-
cacy of such agents needs to be assessed in clinical studies. 
It is also worth mentioning that although many attempts 
have been made to develop host-targeted small molecules 
against viral infections in the past 50 years, only maraviroc 
has gained approval by the FDA, for HIV treatment1.

Outlook
The rapid identification of effective interventions against 
2019-nCoV is a major challenge. Given the available 
knowledge on their safety profiles, and in some cases 
efficacy against closely related coronaviruses, repurpos-
ing existing antiviral agents is a potentially important 
near-term strategy to tackle 2019-nCoV. Phase III trials of 
remdesivir have been initiated, and many other trials 
are being established in China to test various treatment 
options such as umifenovir, oseltamivir and ASC09F 
(Supplementary Table 1). In addition, more than 50 exist-
ing MERS and/or SARS inhibitors, such as galidesivir, the 
protease inhibitors GC813 and compound 3k, the heli-
case inhibitor SSYA10-001 and the nucleoside analogue 
pyrazofurin (Supplementary Table 1) could be screened 
against 2019-nCoV by facilities that have appropriate bio-
containment capability. However, the reported EC50 and 
IC50 values of existing MERS and/or SARS inhibitors are 
mostly in the micromolar range, and further optimization 
of their activities against 2019-nCoV is probably needed 
before agents would be ready for clinical evaluation.

With the ongoing efforts to prevent the spread of 
2019-nCoV worldwide, we hope that the outbreak 
may subside in a few months, as with SARS and MERS. 
Nevertheless, the outbreak has emphasized the urgent 
need for renewed efforts to develop broad-spectrum 
antiviral agents to combat coronaviruses.
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Fig. 1 | Potential drug targets for beta-coronaviruses. a | Genomic organization of 2019-nCoV (GenBank 
reference ID: MN908947.3), indicating the coding regions for proteins that are potential drug targets. b | A drug 
binding pocket is highlighted in the RNA-dependent RNA polymerase of SARS (PDB: 6NUR, 3H5Y), visualized 
using PyMOL V1.7 (https://pymol.org). Chemical structures of four potential inhibitors interfering with the RNA-
dependent RNA polymerase of 2019-nCoV are also shown. 3CL, 3-chymotrypsin-like; HCV, hepatitis C virus; ORF, 
open reading frame; RSV, respiratory syncytial virus. Protein movies are available at www.virusface.com.

https://pymol.org/
https://urldefense.proofpoint.com/v2/url?u=http-3A__www.virusface.com&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=Ox8hxSaY4h9HxgYIOcdYlSAbm_hQ0k8A414B5s_LwHE&m=aszUtWhfvcM9S0w_9pDsyuML3GC070iDjlo0pFnI4GM&s=ikdSEkZ8HpejcVNw00HTrnWt2Tx06gLos1lbT9tFHoQ&e=
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Supplementary Table 1 | Summary of antiviral compounds against human coronaviruses 

Infectious 
diseases Drug targets Antiviral agents Reported mechanism of 

action Status Ref. 

Virus-based treatment strategies 

2019-nCoV; 
Influenza RdRp Favipiravir Inhibits RdRp  

• Approved for influenza in Japan 
• Randomized trial for 2019-nCoV 
(ChiCTR2000029544, 
ChiCTR2000029600) 

[1,2] 

2019-nCoV, 
MERS-CoV, 
SARS-CoV, 
RSV, HCV 

RdRp Ribavirin Inhibits viral RNA synthesis 
and mRNA capping 

• Approved for HCV and RSV 
• Randomized trial for 2019-nCoV in 
combination a  pegylated interferon 
(ChiCTR2000029387). 
• Randomized trial for SARS 
(NCT00578825) 

[2-8] 

2019-nCoV RdRp Penciclovir Inhibits RdRp  Approved for HSV [2] 
2019-nCoV, 
MERS-CoV, 
SARS-CoV 

RdRp Remdesivir 
(GS-5734) 

Terminates the non-obligate 
chain 

• Phase 3 for 2019-nCoV 
(NCT04252664,	NCT04257656) 
• Phase 1 for Ebola (NCT03719586) 

[1,2, 
9-11] 
 

Broad-spectrum 
(e.g. SARS-
CoV, MERS-
CoV, IAV) 

RdRp Galidesivir 
(BCX4430) 

Inhibits viral RNA polymerase 
function by terminating non-
obligate RNA chain 

• Phase 1 for yellow fever 
(NCT03891420) 
• Phase 1 for Marburg virus 
(NCT03800173) 

[12] 

Broad-spectrum 
(e.g. CoV, 
ZIKV, CHIKV) 

RdRp 

6'-Fluorinated- 
aristeromycin 
analogues  
(Compound 2c) 

Inhibits the activity of RdRp 
and host cell S-adenosyl-L-
homocysteine hydrolase 

Preclinical [13] 

HCoV-NL63, 
MERS-CoV RdRp 

Acyclovir fleximer 
analogues  
(Compound 2) 

Doubly flexible nucleoside 
analogues inhibit RdRp Preclinical [14] 

 
MERS-CoV, 
SARS-CoV PLpro Disulfiram Inhibits PLpro Approved for chronic alcohol 

dependence [15] 

MERS-CoV, 
SARS-CoV PLpro 

Thiopurine 
analogues  
(6-mercaptopurine 
and 6-thioguanine) 

Inhibits PLpro Preclinical [16] 

MERS-CoV PLpro Compound 6 Inhibits PLpro Preclinical [17] 
 

2019-nCoV; 
MERS-CoV, 
SARS-CoV; 
HCoV-229E; 
HIV, HPV 

3CLpro Lopinavir Inhibits 3CLpro 

• Approved for HIV  
• Phase 3 for 2019-nCoV 
(NCT04252274, NCT04251871, 
NCT04255017, ChiCTR2000029539) 
• Phase 2/3 for MERS 
(NCT02845843) 

[11, 
18-21] 

2019-nCoV, 
MERS-CoV 3CLpro Ritonavir Inhibits 3CLpro 

• Approved for HIV 
• Phase 3 for 2019-nCoV 
(NCT04251871, NCT04255017, 
NCT04261270) 
• Phase 2/3 for MERS 
(NCT02845843) 

[11,18,
20,21] 

2019-nCoV 3CLpro Darunavir and 
cobicistat Inhibits 3CLpro 

• Approved for HIV 
• Phase 3 for 2019-nCoV 
(NCT04252274) 

- 

2019-nCoV 3CLpro ASC09F (HIV 
protease inhibitor) Inhibits 3CLpro 

Phase 3 for 2019-nCoV in 
combination with oseltamivir 
(NCT04261270) 

- 

MERS-CoV, 
SARS-CoV 3CLpro GC376 Inhibits 3CLpro Preclinical [22] 

MERS-CoV 3CLpro GC813 Inhibits 3CLpro Preclinical [23] 

SARS-CoV 3CLpro Phenylisoserine 
derivatives (SK80) Inhibits 3CLpro Preclinical [24] 

MERS-CoV, 
SARS-CoV 3CLpro 

Peptidomimetic 
inhibitors  
(Compound 6) 

Inhibits 3CLpro Preclinical [25] 

HCoV-229E 3CLpro 1,2,3-triazoles 
(Compound 14d) Inhibits 3CLpro Preclinical [26] 

SARS-CoV, 
MERS-CoV 3CLpro 

Neuraminidase 
inhibitor analogues 
(compound 3k) 

Inhibits 3CLpro Preclinical [27] 

SARS-CoV 3CLpro Unsymmetrical 
aromatic disulfides - Preclinical [28] 
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SARS-CoV 3CLpro Pyrithiobac 
derivatives (6-5) Inhibits SARS-CoV 3CLpro Preclinical [29] 

SARS-Cov, 
HCV Helicase 

Bananins and 5-
hydroxychromone 
derivatives 

Inhibits ATPase and helicase 
activities Preclinical [30] 

SARS-CoV, 
MERS-CoV, 
MHV 

Helicase SSYA10-001 and 
ADKs 

Inhibits helicase without 
affecting ATPase activity Preclinical [31,32] 

MERS-CoV Helicase Triazole derivatives 
(Compound 16) 

Inhibits ATPase and helicase 
activities Preclinical [33] 

 
2019-nCoV, 
MERS-CoV 

Spike 
glycoprotein Nafamostat Inhibits spike-mediated 

membrane fusion 
Approved for anticoagulant therapy in 
Asian countries [2,34] 

SARS-CoV Spike 
glycoprotein Griffithsin 

Griffithsin binds to the SARS-
CoV spike glycoprotein, thus 
inhibiting viral entry 

Phase 1 for the prevention of HIV 
transmission (NCT02875119 and 
NCT04032717) 

[35,36] 

Broad-spectrum 
(SARS-CoV, 
MERS-CoV, 
influenza) 

Spike 
glycoprotein Peptide (P9) Inhibits spike protein-mediated 

cell-cell entry or fusion Preclinical [37] 

MERS-CoV, 
IAV 

Spike 
glycoprotein 

α-Helical 
lipopeptides (e.g. 
LLS, FFS, IIS, IIK) 

Inhibit spike protein-mediated 
cell-cell entry or fusion Preclinical [38] 

MERS-CoV 
S2 subunit of 
the spike 
glycoprotein 

HR1P, HR1M, 
HR1L, HR2L, 
HR2P, HR2L 

Inhibits MERS-CoV replication 
and spike protein-mediated cell-
cell fusion 

Preclinical [39-41] 

MERS-CoV 
S2 subunit of 
the spike 
glycoprotein 

HR2P-M1 
HR2P-M2 

Inhibits MERS-CoV spike 
protein-mediated cell-cell 
fusion and infection 

Preclinical [39,42,
43] 

MERS-CoV Spike 
glycoprotein P21S10 Inhibits spike protein-mediated 

cell−cell fusion Preclinical [44] 

MERS-CoV Spike 
glycoprotein 

Dihydrotanshinone 
E-64-C, and E-64-D 

Blocks the endosomal entry 
pathway Preclinical [45,46] 

HCoV (e.g. 
MERS, SARS) 

Spike 
glycoprotein 

OC43-HR2P (most 
promising EK1) Inhibits pan-CoV fusion Preclinical [47] 

MERS-CoV Spike 
glycoprotein MERS-5HB 

Inhibits pseudo typed MERS-
CoV entry and S protein-
mediated syncytial formation 

Preclinical [48] 

HCoV-229E Spike 
glycoprotein 

229E-HR1P 
229E-HR2P 

Inhibits spike protein-mediated 
cell-cell fusion Preclinical [49] 

 

MERS-CoV 
Nucleocapsid 
protein 
(possible) 

Resveratrol - Clinical stages for several diseases 
(e.g. heart disease) [50] 

HCoV, influenza 
virus 

Fusion 
inhibitors 

1-thia-4-azaspiro 
[4.5] decan-3-one 
derivatives 
(Compound 8n) 

- Preclinical [51] 

MERS-CoV, 
SARS-CoV 

DNA 
metabolism 
inhibitor 

Gemcitabine 
hydrochloride - Approved as chemotherapy [46] 

MERS-CoV, 
SARS-CoV - Amodiaquine - Approved for malaria [46] 

MERS-CoV, 
SARS-CoV - Mefloquine - Approved for malaria [46] 

MERS-CoV, 
SARS-CoV 
HCoV-229E 

- Loperamide - Approved as an antidiarrheal agent [19] 

2019-nCoV; 
Influenza virus; ? Arbidol 

(Umifenovir) ? 

• Approved for influenza in Russia 
and China 
• Phase 4 for 2019-nCoV 
(NCT04260594, NCT04254874,	
NCT04255017) 

- 

2019-nCoV; 
Influenza virus; ? Oseltamivir Oseltamivir is an influenza	

neuraminidase inhibitor. 

• Approved for influenza 
• Phase 4 for 2019-nCoV 
(NCT04255017), Phase 3 for 2019-
nCoV (NCT04261270) 

- 

Host-based treatment strategies  

2019-nCoV; 
SARS-CoV; 
MERS-CoV 

Interferon 
response 

Recombinant 
interferons 
(interferon-a , 
interferon-b, 

Exogenous interferons 

• Approved for metastatic renal cell 
carcinoma (IFN-α2a), melanoma 
(IFN-α2b), multiple sclerosis (IFN-
β1a, 1b), chronic granulomatous 
disease (IFN-γ) 

[3-8, 
21] 
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interferon-g) • Randomized trial for 2019-nCoV 
(NCT04251871, ChiCTR2000029638) 

2019-nCoV 
SARS-CoV 
MERS-CoV 

Endosomal 
acidification Chloroquine 

A lysosomatropic base that 
appears to disrupt intracellular 
trafficking and viral fusion 
events 

• Approved for malaria and certain 
amoeba infections 
• Open-label trial for 2019-nCoV 
(ChiCTR2000029609) 

[2,19, 
52,53] 

Broad-spectrum 
(e.g.  
coronaviruses, 
2019-nCoV) 

Interferon 
response Nitazoxanide 

Induces the host innate immune 
response to produce interferons 
(a and b) by the host’s 
fibroblasts and protein kinase R 
(PKR) activation 

Approved for diarrhea treatment  [2,54] 

SARS-CoV, 
MERS-CoV, 
HIV, HCV 

Cyclophilins Cyclosporine A 

Cyclophilin inhibitor that could 
modulate the interaction of 
cyclophilins with SARS-CoV 
nsp1 and the calcineurin–NFAT 
pathway 

Approved for immunosuppression 
during organ transplantation [55-58] 

SARS-CoV, 
MERS-CoV, 
HIV, HCV 

Cyclophilins Alisporivir 

Modulates the interaction of 
cyclophilins with SARS-CoV 
nsp1 and the calcineurin–NFAT 
pathway 

Phase 3 for HCV (e.g.  
NCT01860326) 

[55-
57,59] 

MERS-CoV 
SARS-CoV 

Abelson 
kinase Imatinib mesylate Blocks events of early 

viral entry and/or post-entry Approved for treating cancers [46,60] 

MERS-CoV, 
SARS-CoV 

Abelson 
kinase Dasatinib - Approved for treating cancers [46] 

MERS-CoV 
SARS-CoV 

Abelson 
kinase Selumetinib 

Inhibits the ERK/MAPK and 
PI3K/AKT/mTOR signaling 
pathways 

Clinical trials for cancers (e.g.  non-
small cell lung cancer, thyroid cancer) [61] 

MERS-CoV, 
SARS-CoV 

Abelson 
kinase Trametinib 

Inhibits the ERK/MAPK and 
PI3K/AKT/mTOR signaling 
pathways 

Approved for treating cancers [61] 

MERS-CoV 
Kinase 
signaling 
pathways 

Rapamycin 

Inhibits the ERK/MAPK and 
PI3K/AKT/mTOR pathways 
significantly inhibited MERS-
CoV replication 

Approved originally as an antifungal 
agent [61] 

MERS-CoV Tyrosine 
kinases Saracatinib - Approved for treating cancers [62] 

SARS-CoV 
MERS-CoV 

Clathrin- 
mediated 
endocytosis 

Chlorpromazine, 
Triflupromazine, 
Fluphenazine, 
Thiethylperazine, 
Promethazine 

Antipsychotic that affects the 
assembly of clathrin-coated pits 
at the plasma membrane 

The former three were approved as 
antipsychotic agents [19,46] 

Broad-spectrum 
(HCoV-229E) 

Interferon 
response 

Cyclophilin 
inhibitors 
(Compound 30) 

Inhibiting the activity of PPIase Preclinical [63] 

SARS-CoV 
MERS-CoV 
HCoV-229E 

Endosomal 
protease K11777, Camostat 

Blocks endosomal protease-
mediated cleavage and the 
endosomal entry pathway 

Preclinical [64] 

SARS-CoV, 
MERS-CoV, 
HCoV-229E 

Host cell 
membrane-
bound 
viral 
replication 
complex 

K22 
Inhibits membrane-bound 
RNA synthesis and double 
membrane vesicle formation 

Preclinical [65,66] 

Broad-spectrum 
(influenza virus, 
HCoV, Ebola, 
HIV, HCV) 

Antibiotics Teicoplanin 
derivatives - Widely used for treating gram-positive 

infections in Europe [67] 

Broad-spectrum 
(e.g. CoV, 
influenza virus, 
RSV) 

- 
Benzo-heterocyclic 
amine derivative 
(N30) 

Depression of IMPDH activity Preclinical [68] 

MERS-CoV, 
HBV, HCV - Mycophenolic acid Inhibits IMPDH and guanine 

monophosphate synthesis 
Approved immunosuppressant during 
organ transplantation [16,69] 

MERS-CoV, 
HCoV-229E, 
EBOV, 
Picornaviridae 

eIF4A Silvestrol 
Inhibits the DEAD-box RNA 
helicase eIF4A to affect virus 
translation 

Potential anticancer rocaglate 
derivative [70] 

Broad-spectrum 
(influenza A and 
B, RSV, HCoV) 

DHODH Pyrimidine 
(FA-613) Inhibits DHODH Preclinical [71] 

SARS-CoV, 
MERS-CoV, 
influenza 

- Convalescent plasma Inhibits virus entry to the target 
cells Phase 2 (NCT02190799 withdrawn) [72-74] 
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Abbreviations 

3CLpro: 3C-like protease, CHIKV: Chikungunya virus, DHODH: dihydroorotate dehydrogenase, HBV: hepatitis B virus, HCoV: 

human coronavirus, HCV: hepatitis C virus, IAV: influenza A virus, IMPDH: inosine-monophosphate dehydrogenase, IMPTH: 

inosine-5’-monophosphate dehydrogenase, JEV: Japanese encephalitis virus, MERS: Middle East respiratory syndrome, MERS-

CoV: Middle East respiratory syndrome coronavirus, PEDV: porcine epidemic diarrhea virus, PLpro: papain-like protease, 

PPIase: peptidyl-prolyl isomerase, RBD: receptor-binding domain, RdRp: RNA-dependent RNA polymerase, RSV: respiratory 

syncytial virus, SARS-CoV: severe acute respiratory syndrome coronavirus, ZIKV: Zika virus. 
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