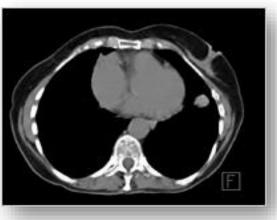
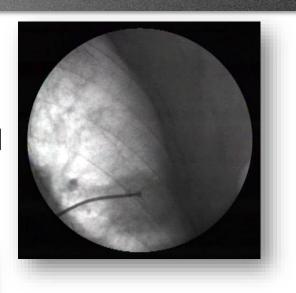
Emerging technologies for small and smaller lesions – Update on ablation

Felix JF Herth University of Heidelberg Germany


HDZL () TLRC

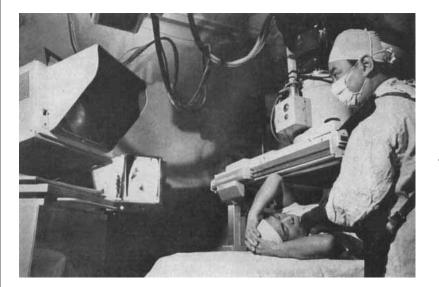

Col 2015-2018

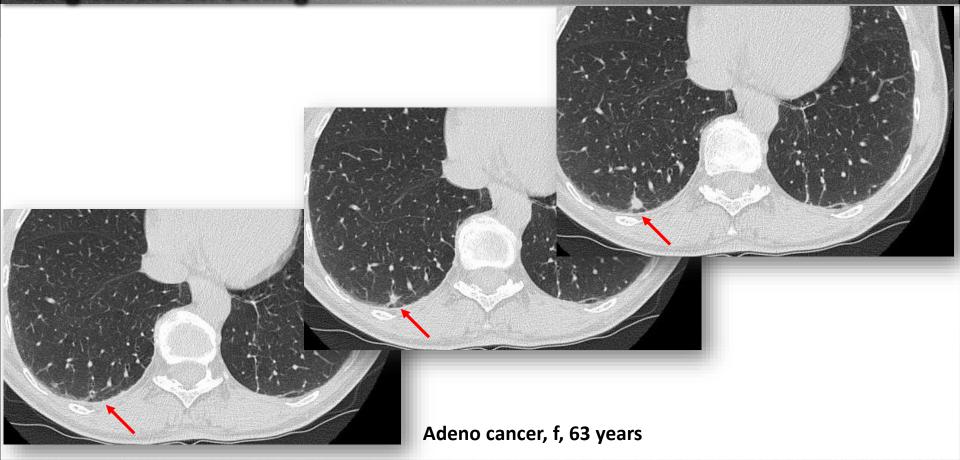
A solitary pulmonary nodule (SPN) or coin lesion is a mass in the lung smaller than 3 centimeters in diameter. It can be an incidental finding found in up to 0.2% of chest X-rays and around 1% of CT scans.

TLRC 6

https://en.wikipedia.org/wiki/Solitary_pulmonary_nodule

Fluoroscopic guided TBB



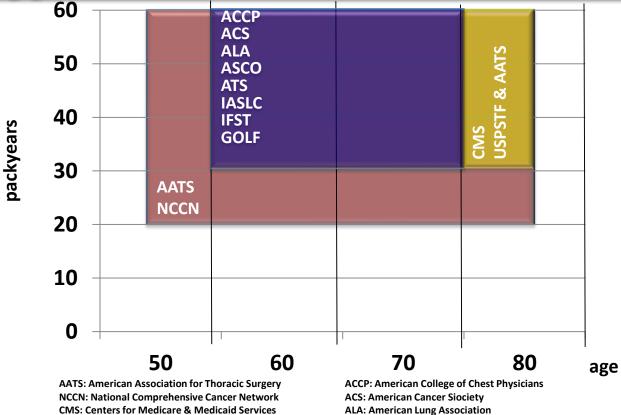

TABLE 5. Result of Transbronchial Biopsy on Metastatic Pulmonary Tumors

Tumor diameter (cm)	No. of cases	Posi- tive	Nega- tive	Accu- racy
-2.0	8	1	7	
2.1 - 3.0	6	1	5	
3.1-	10	5	5	
_				<u> </u>
TOTAL	24	7	17	29.1%

HDZL () TLRC

Tsuboi et al., Cancer 1967

Lung cancer screening



PDZL () TLRC

LC screening guidelines

IFST: Cancer Network GOLF: Cancer Care

USPSTF: US Preventive Services Task Force

ASCO: American Society of Clinical Oncology

ATS: American thoracic Society

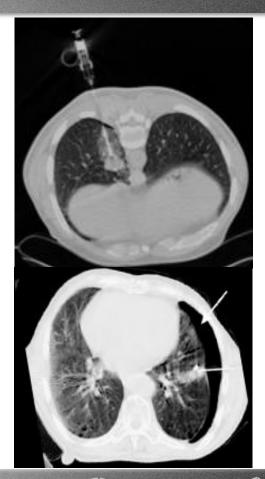
IASLC: International association of Study of Lung Cancer

DZL

Lung cancer screening

trial	SPN	thereof malignant	SPN size
NLST (n= 53.454)	6466	3.6 %	1.3 cm
DANTE (n=2472)	672	4.1 %	1.1 cm
DLCST (n=4104)	983	0.7 %	1.2 cm
Nelson (n=15,822)	2507	8 %	1.4 cm
LUSI (n=4052)	540	1.6 %	1.5 cm

Access to SPN


Dx Options for Peripheral Nodules < 3 cm - comparison

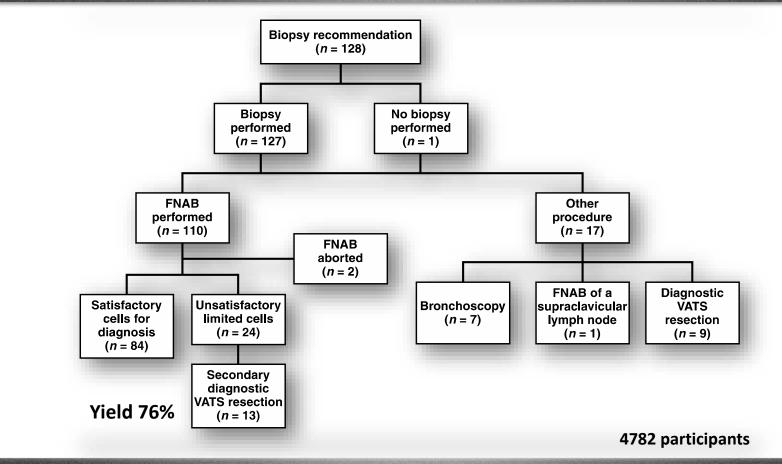
Diagnosis Option	Modality	Yield	Details
Chest x-ray or CT	Radiographic	N/A	Good early indicator, but not definitive
Transbronchial biopsy under fluoro guidance	Bronchoscopic	~30%	Very difficult to localize and access intraparenchymal nodules
TBB w/Navigation	Bronchoscopic	60-80%	Addition of navigation increases yield by 30-50% Avoids issues associated with TTNA
Transthoracic sampling (TTNA)	CT Guided	90%	Although this technique has a higher yield, it is difficult to reach nodules close to vessels, risk of pneumothoraces, chest tube placement
Thoracotomy, Thoracoscopy	Surgery	90%+	Surgery is invasive, expensive, painful, long patient recovery time

MDZL () TLRC

Transthoracic needle aspiration

- "Über infectiöse Pneumoniae"
 - Leyden O, Dtsch. Med. Wochenschr 1893
- Sensitifity for malignancy
 - 72 % 90 %
- Complications:
 - Pneumothorax up to 50%
 - 10-25 % drainage needed

Manhire A et al. Guidelines for radiologically guided lung biopsy. Thorax 2003 ZL () TLRC


CT guided NA

I-ELCAP – Toronto subtrial

Wagnetz et al., AJR 2012; 198:351–358

complications

44 % asymptomatic pneumthoraces

HDZL () TLRC

• 13 % Pneu with drainage

=> pneumo rate 57%

Wagnetz et al., AJR 2012; 198:351–358

CT guided needle aspiration

248 patients SPN < 20 mm

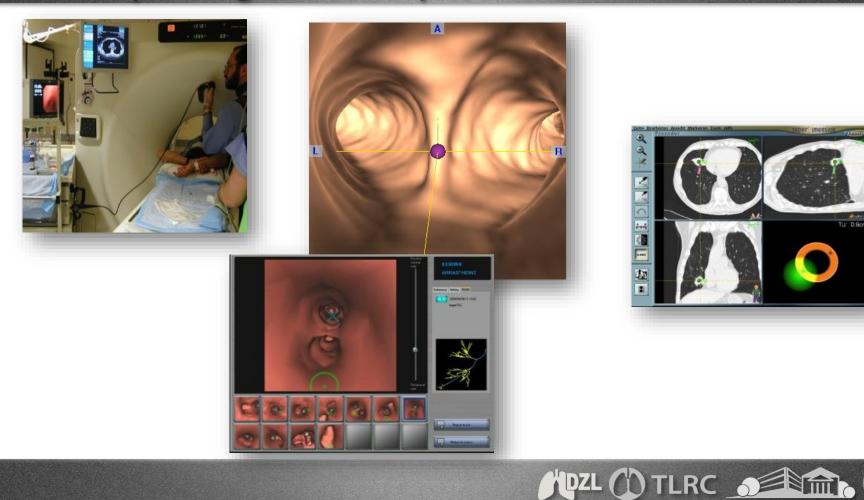
CT needle	guid	

yield complications

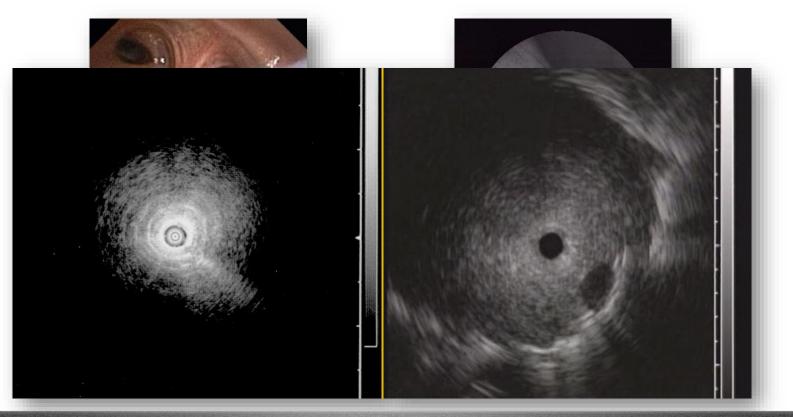
Characteristics	Ν	Pneumothorax rate (%)
Age, years		
>60	120	15.0
≤60	128	17.2
Sex		
Male	144	19.4
Female	104	15.4
Size of pulmonary nodule		
\leq 10 mm	108	15.7
>10 mm and $<$ 20 mm	140	16.4
Needle path length, mm		
\leq 30	86	10.5
31–50	124	16.9
>50	38	26.3
Number of punctures		
1	213	13.6
2	35	31.4

yield: 93 %, pneumorate 24%

MDZL () TLRC


Fluoroscopic guided TBB

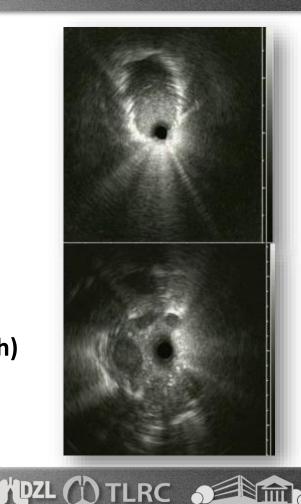
All Methods:			< 2 cn	n LESI	ON		> 2 c	m LESI	O
First Author	Year	Ν	Pos	Neg	Sens	Ν	Pos	Neg	Straw
Gasparini ¹¹⁰	1995	195	82	113	42	300	169	131	56
Hattori ⁷⁶	1971	17	13	4	76	182	150	32	82
Baaklini ⁸⁸	2000	16	4	12	25	135	93	42	69
Wallace ¹²²	1982	65	3	62	5	78	24	54	31
Bandoh ¹³⁰	2003	25	8	17	32	72	50	22	69
Radke ¹⁰⁶	1979	21	6	15	29	76	49	27	64
Naidich ¹²¹	1988	15	4	11	27	46	26	20	57
Trkanjec ¹²⁹	2003	17	9	8	53	33	27	6	82
McDougall ¹⁰⁵	1981	9	1	8	11	36	21	15	58
Stringfield ¹⁰⁷	1977	3	1	2	33	26	13	13	50
Summary		383	131	252	34	984	622	362	63


MDZL () TLRC

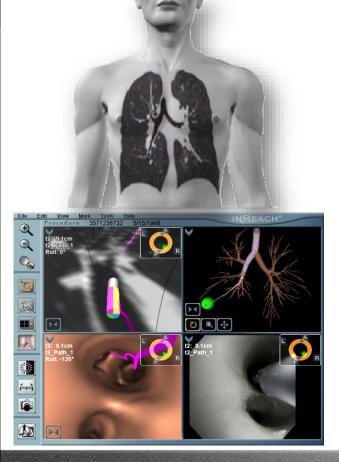
Establishing the Diagnosis of Lung Cancer – ACCP guideline CHEST 2013; 143(5):e142S–e165S

Bronchoscopic Navigation techniques

EBUS guided TBB

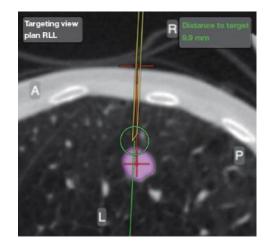

EBUS TBB

Pro´s


- improved yield
- with/without fluoroscopy 69 75 %

Con´s

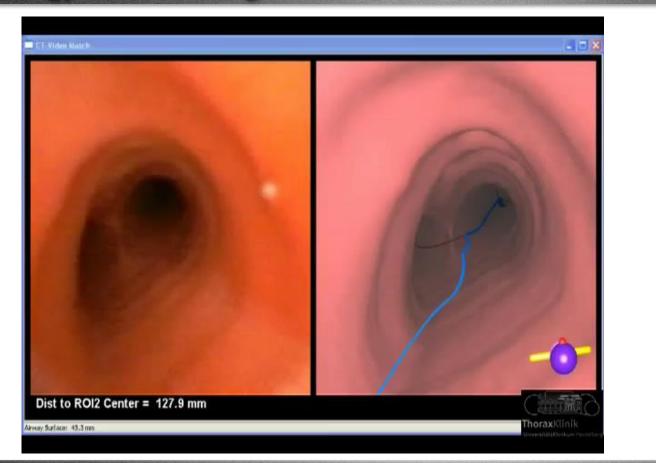
- try and error technique
- no steerability
- additional procedure costs (probe, guide sheath)
- yield drops below SPN < 2 cm



Electromagnetic navigation bronchoscopy (ENB)

i-Logic[©] (Medtronic)

SPiNDrive[©] (Veran)



- virtual CT-reconstruction
- elektromagnetic field
- steerable probes/instruments

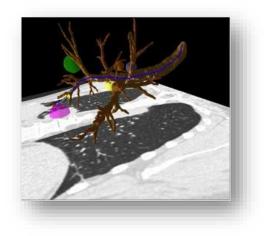
MDZL 🕧 TLRC 🔬

• extended working channel

Lungpoint AR Navigation Procedure Video

MDZL () TLRC

LungPoint[®] Navigation - a approach to SPN


feasibilty and safety trial

- SPN < 40 mm
 - mean 28 mm
- definitive diagnosis 80%
- 1 small pneumothorax

Eberhardt R et al., Respiration 2010

- 68 SPN < 30 mm
 - mean 22 mm (R 10–30 mm)
- diagnostic yield 77.9%

Tamiya et al., Respirology 2013

TLRC

Pro´s

- NB improves yield
- with fluoroscopy 69 75 %
- without fluoro 62 77 %

Con's

- no real-time control
- virtual reality
- additional procedure costs (Medtronic, Veran, steerable catheter)

TLRC

yield drops below SPN < 2 cm

ENB – EBUS combination

		EBUS n (%)	ENB n (%)	EBUS and ENB n (%)
120 patients SPN 10-32 mm	Overall diagnostic yield	27/39 (69)	23/39 (59)	35/40 (88)
	Yield by lesion size: $\leq 20 \text{ mm}$ 20 - 30 mm $\geq 30 \text{ mm}$	7/9 (78) 16/23 (70) 4/7 (57) - p=0.80	3/4 (75) 11/22 (50) 9/13 (69) p=0.50	9/10 (90) 21/24 (88) 5/6 (83) p=0.99
EBUS vs. EMN vs. EBUS + EMN	Yield by lobar location: Bilateral upper lobes Right middle lobe Bilateral lower lobes Yield for malignant disease: Sensitivity Specificity Positive predictive value Negative predictive value Yield for benign disease:	16/27 (59) 3/3 (100) 8/9 (89) 23/32 (72) 7/7 (100) 23/23 (100) 7/16 (44)	17/22 (77) 2/3 (67) 4/11 (29) p=0.01† 16/29 (55) 10/10 (100) 16/16 (100) 10/23 (44)	17/20 (85) 2/2 (100) 16/18 (89) 28/31 (90) 9/9 (100) 28/28 (100) 9/12 (75)
yield complications	Sensitivity Specificity Positive predictive value Negative predictive value Pneumothorax rate	4/7 (57) 32/32 (100) 4/4 (100) 32/35 (91) 2/39 (5)	7/10 (70) 29/29 (100) 7/7 (100) 29/32 (91) 2/39 (5)	7/9 (78) 31/31 (100) 7/7 (100) 31/33 (94) 3/40 (8)

HOZL () TLRC

VBN and rEBUS

199 patients SPN 10-30 mm

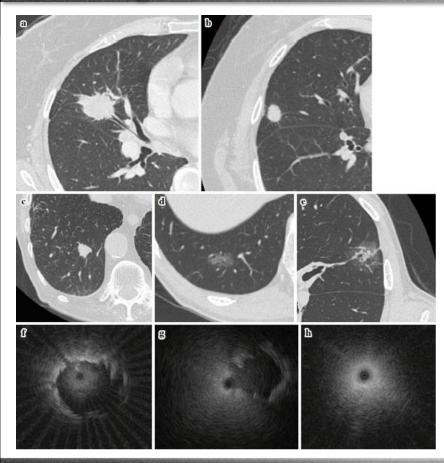
Table 0

VBN + rEBUS		Bronchoscopic dia	agnosis	
VS.	Lesion size	VBNA	NVBNA	p Value
classical bronch + rEBUS	<20 mm	44/58 (75.9)	35/59 (59.3)	0.056
	20—30 mm	36/41 (87.8)	29/36 (80.6)	0.382
	Total	80/99 (80.8)	64/95 (67.4)	0.032

Discussion wield according to locing size in the new systemal

MDZL () TLRC

yield complications


Ishida T et al., Thorax 2011

	Study	Year	# > 20mm	dx > 20mm	Yield > 20mm (%)	# <u>< 2</u> 0mm	dx <u>< 2</u> 0mm	Yield < 20mm (%)
1	Kikuchi ²⁶	2004	9	6	66.7	15	8	53.3
2	Kurimoto ²⁷	2004	69	57	83	81	59	73
3	Asahina ³⁰	2005	12	11	91.7	18	8	44.4
4	Schwarz ³³	2006	11	8	72.7	2	1	50
5	Gildea ³⁴	2006	23	17	73.9	31	23	74.1
6	Asano ³⁵	2006	12	10	83.3	26	21	80.8
7	Dooms ³⁸	2007	39	32	82.1	11	2	18.2
8	Makris ³⁹	2007	20	15	75	20	10	50
9	Eberhardt ²⁰	2007	30	20	67	9	7	78
10	Tachihara ⁴⁰	2007	19	18	94.7	77	42	54.5
11	Yoshikawa ⁴¹	2007	86	78	90.7	37	28	75.7
12	Eberhardt ⁴²	2007	57	40	63	35	22	70
13	Yamada ⁴³	2007	84	65	77.4	74	41	55.4
14	Asano ⁴⁵	2008	17	16	94.1	15	11	73.3
15	Oki ⁴⁷	2008	75	55	73.3	23	13	56.5
16	Lamprecht ⁴⁸	2009	9	7	77.8	4	3	75
17	Eberhardt ⁵¹	2009	0	0		100	46	46
18	Bertoletti ⁵²	2009	46	37	80.4	7	3	42.9
19	Oki ⁵⁴	2009	57	44	77	14	5	36
20	Iwano ⁵⁵	2009	92	74	80.4	30	22	73.3

MDZL () TLRC

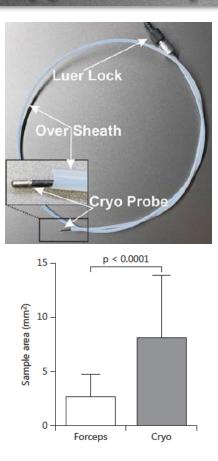
Silvestri et al., Chest 2013

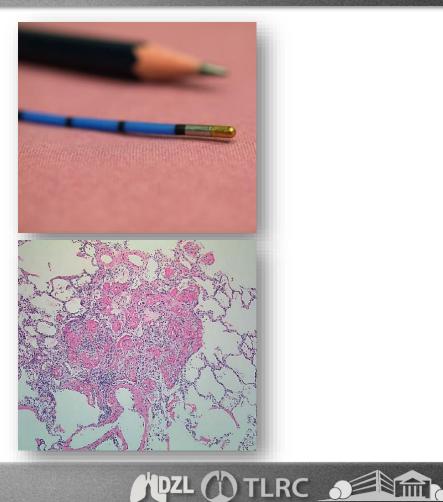
SPN navigation factors of success

Bronchus sign

+ size

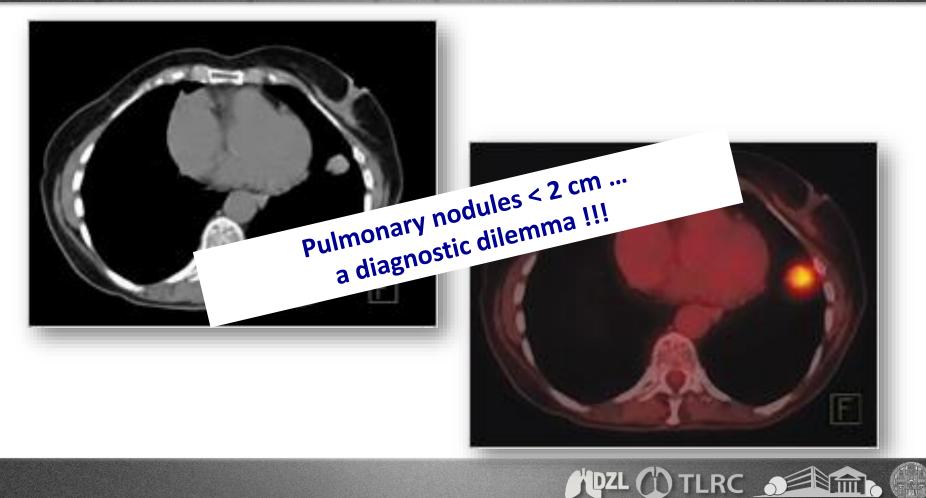
DZL () TLRC


Solid vs GGO


+ location

Probe placement

Intern Med 2016:55; 1705-1712


Influence of biospy tools - Cryoprobes

Prototype – unpublished data

Solitary Pulmonary Nodule (SPN)

Biopsy limitation

Trans-Parenchymal Nodule Access

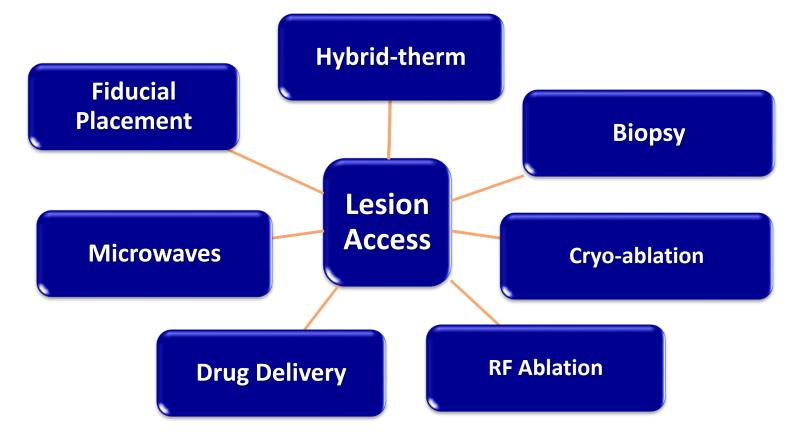
Trans-Parenchymal Nodule Access: First in human data

Site	Size (mm)	Visible at fluoroscopy	Procedure planning time (min)	Nodule access time (min)	Fluoroscopy time (min)	Intra-procedural adverse events	Tunnel length (mm)
LUL	40	Yes	10	40	11.6	None	10
Lingula	20	Yes	15	Data not recorded	7.09	None	50
ш	25	No	30	30	5.18	None	60
LUL	31	Yes	18	No sample taken	5	Sheath could not be directed along optimal path	-
RML	22	No	15	26	6.7	None	50
LLL	22	No	12	13	3	None	30
RLL	30	No	25	30	1.8	None	30
RLL	18	Yes	15	17	3.6	None	60
RLL	20	No	30	12	4.2	None	90
RML	28	Yes	15	13	9.8	None	70
LUL	17	No	14	No sample taken	N/A	Sheath could not be directed along optimal path	-
LUL	31	No	10	15	2.1	None	20

HDZL () TLRC

Lesion Size	Diagnostic Yield	SPN Major Axis	Closest Distance to Pleura Based on Biopsy Angle
		Mean (mm)	Mean (mm)
<20.0mm	83.8%	12.3 ± 4.2	21.3 ± 13.2
≥ 20.0 mm	83.8%	23.8 ± 2.5	19.0 ± 18.7

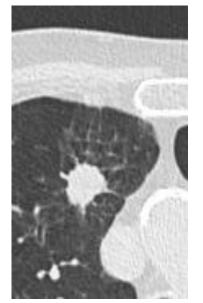
Overall diagnostic yield was 83,8% on SPNs with a mean major axis of 18.1 \pm 6.8 mm

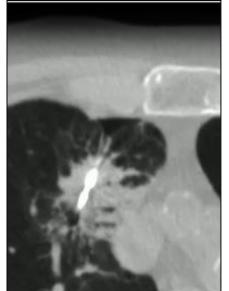

Herth FJF et al., ERS 2018

Robotic bronchoscopy

DZL () TLRC

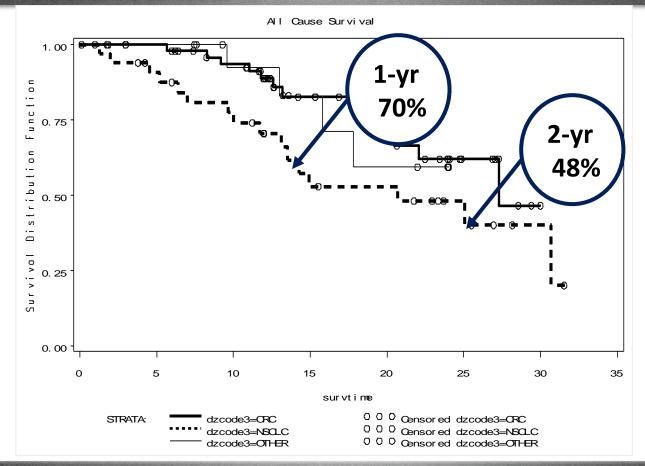
Lung Cancer Treatment Options


Surgery	SBRT	RF/MW/Cryo	Vapor
		→ 268 4-	Salama Tray Catination Catination Salama Tray Salama T
Effective	Complete kill difficult to achieve and determine	Complete kill difficult to achieve and determine	Effective (Anticipated)
30 – 90 minutes	30 – 90 minutes20 min beam on, 3 times over 2 wks		8-10 seconds per ablation
Surgeon	Radiation Oncologist	Interventional Radiologist	Interventional endoscopist
In OR	In dedicated suite	In CT gantry	bronchoscopy lab
38% major complications	Stroke, myocardial infarction, aggravation emphysema	Pneumothorax	Substantially safer
Wide margin resected	Fiducials, tattoos, immobilization	Probe must be in center of lesion	Easy placement in proximal airway
Pulmonary function impact	Toxicity build up	Repeatable, but slow	Easily repeatable in other areas


RF-Ablation of Lung Tumors

Pre - Ablation

Peri - Ablation



Post - Ablation

RAPTURE: Overall Survival

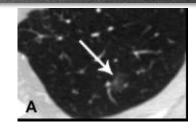
Lencioni et al. Lancet Oncol 2008; 9:621-628

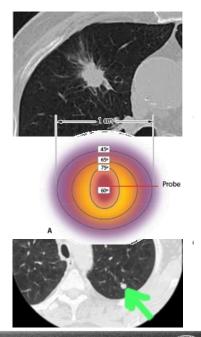
DZL () TLRC

RFA of Lung Cancer

Relies on thermal conductivity of tumor to ablate

- Semi-solid tumors have regions of low thermal conductivity
- Ground glass opacities (GGO) have very low thermal conductivity


Relies on a small surface area to volume ratio (SA to V ratio)

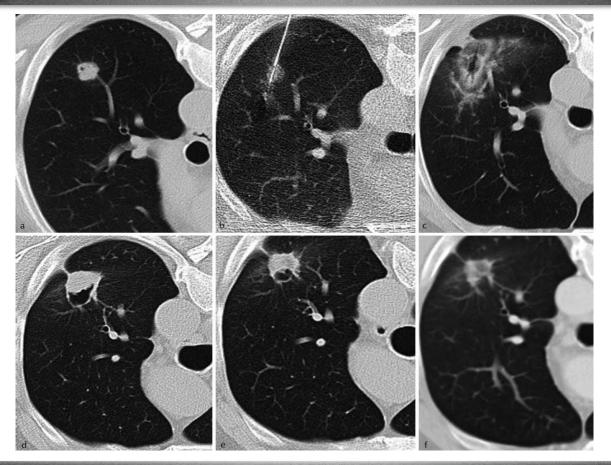

- Majority of malignant early stage tumors are spiculated
- Spiculations are "tentacle like" outgrowths

Often desiccates and chars tissue

• Causes incomplete ablation of tumor by forming insulative sleeve around probe

Good in solid, non-spiculated tumors < 2cm

DTLRC


Microwave Ablation

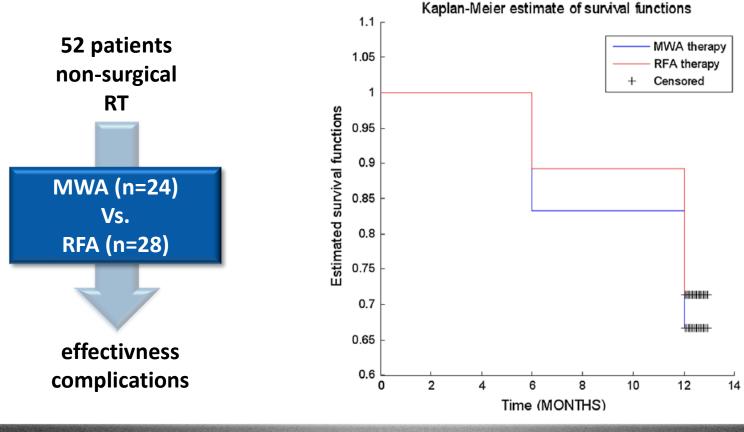
Microwave

MOZL () TLRC

Microwave - results

author, year of pub- lication	patient number (n)	pathology (number of ablated lesions)	follow-up (months)	LTP (%)		overall survival (OS) (%) cancer-specific survival (CSS) (%)				
					1 year	2 years	3 years	4 years	5 years	
Wolf, 2008 [1]	50	NSCLC: 27 SCLC: 3 Met: 20	Mean: 10	26	05: 65 C25: 83	55 73	45 61			
Vogl, 2011 [2]	80	Met: 130	Mean: 9	27	OS: 91	75				
Lu, 2012 [3]	69	NSCLC (I-IV): 56 Met: 37	Median: 18	16	OS NSCLC: 75 OS Met: 47	54 24	29 14			
Belfiore, 2013 [8]	56	NSCLC: 44 Met: 25	N/A	0	CSS: 69	54	49			
Carrafiello 2014 [9]	24	NSCLC (I-IV): 14 Met: 11 Microcytoma: 1	Mean: 9.9	23	05 75	55				
Liu, 2013 [10]	15	NSCLC (I): 15	Median: 12	31						
Yang, 2014 [12]	47	NSCLC (I): 47	Median: 30	27	OS: 89	63	43		16	
Han, 2015 [15]	28	NSCLC (I+ IIA): 28	Median: 22	32	OS: 80.5 CSS: 95	74 74	22 65	22 65		
Sun, 2015 [18]	29	NSCLC (I-IV): 15 Met: 14	Median: 25	34	05: 91	86				
Egashira, 2016 (22)	44	Met: 87	Median: 15	2						

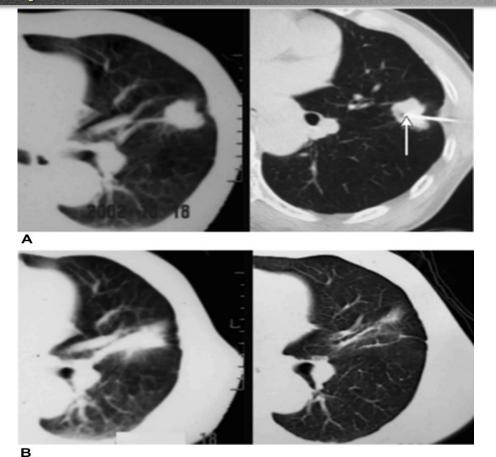
Vogl et al., Rofo 2017


Microwave - complications

author, year of publication	patient number (n)	procedure- related deaths (%)	pneum othorax (%)	severe pneu- mothorax (%)	hemorrhage(H) hemptysis (P) hemothorax (T) (%)	skin burns (B) pain (P) (%)	pneumonia (%)	pleural effusion (%)
Wolf, 2008 [1]	50	1.5	39	12	6 (P)	3 (B) 2 (P)	3	-
Vogl, 2011 [2]	80	0	8.5	0.8	6 (H) 4.6 (P)	0.8 (B) 9 (P)	-	-
Lu, 2012 [3]	69	0	18.8	7.2	7.2 (P) 2.9 (T)	2.9 (P)	-	-
Belfiore, 2013 [8]	56	0	32	14	-	17.8 (P)	-	-
Carrafiello 2013 [9]	24	0	37.5	0	3.8 (P)	-	-	3.8
Wei, 2015 [11]	39	0	30.8	7.7	15.3 (T)	-	18	18
Yang, 2014 [12]	47	0	63.8	13.5	31.9 (P)	27.6 (P)	14.9	34
Zheng, 2014 [13] (major complications)	184	0.5	-	15.7	-	-	0.5 (abscess)	2.9
Han, 2015 [15]	28	0	50	28.5	3.5 (P)	-	3.5	7.1
Ni, 2015 [16]	35	0	20.5	7.7	5.1 (H) 2.6 (P)	23.1 (P)	5.1	15.4
Splatt, 2015 [17] (major complications)	51	1.4	-	12.9	2.9 (H)	1.4 (B)	2.9	5.7
Egashira, 2016 [22]	44	0	-	13	6.9 (H)	-	-	-

MDZL () TLRC

Vogl et al., Rofo 2017


RFA vs. MWA

Med Oncol (2017) 34:96

DZL () TLRC

Cryoablation

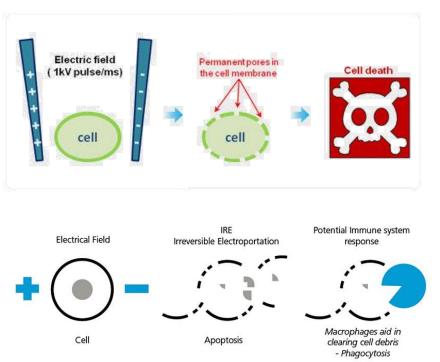
CHEST 2017 151, 674-685DOI: (10.1016/j.chest.2016.05.025)

Cryoablation

Study group and year	Number of patients	Tumor data	Tumor size [*] (mm)	Indications	Freeze/thaw cycle	Follow-up	LCR	Survival
Wang et al. [17], 2005	187: 165 NSCLC (5 stage I, 17 stage II, 80 stage III, and 63 stage IV), 22 metastasis	234 tumors: 196 primary cancer and 38 metastasis	43 ± 2 in peripheral locations and 64 ± 3 in central locations	Local control and palliation	Double	NA	NA	NA
Kawamura et al. [18], 2006	20: all metastasis	35	Mean tumor size, 13.3	Local control	Triple	9 to 28 months (median, 21 months)	LCR: 80%	1 y OS: 89.4%
Zemlyak et al. [35], 2010	27: all NSCLC (27 stage I)	27	NA	Local control	NA	Mean, 33 months	LCR: 89%	3 y OS/cancer-specific survival/cancer-free survival rate: 77.0%/90.2%/45.6%, respectively
Yamauchi et al. [28], 2011	24: all metastasis	55	13±7	Local control	Triple	Median, 40 months	1/3 y LCR: 90.8% and 59%, respectively, 3 y LCR of tumors <15 mm and >15 mm: 79.8% and 28.6%, respectively (<i>P</i> = 0.001)	1/3 y OS: 91%/59.6%, respectively
Zhang et al. [14], 2012	46: all NSCLC (12 stage I, 19 stage II, and 15 stage III)	46	32 ± 11	Local control	Double	24 months	2 y LCR: 83.7%.	2 y OS: 93.5%.
Pusceddu et al. [19], 2013	32: 11 NSCLC (4 stage I, 3 stage II, 3 stage III, and 1 stage IV), 21 metastasis	34 tumors: 11 primary cancer and 23 metastasis	26 ± 12	Local control	Double or triple	6 months	1/3/6 mo technical success: 82%/97%/91%, respectively	NA
Yamauchi et al. [8], 2012	22: all NSCLC (22 stage I)	34	14±6	Local control	Triple	12 to 68 months (median, 23 months)	LCR of 97%	2 /3 y OS: 88%/88%, respectively
Yashiro et al. [27], 2013	71 (patients characteristics were not reported)	210 tumors: 11 primary cancer and 199 metastasis	Mean tumor size, 12.8	Local control	Triple	79 to 2467 days (median, 454 days)	1 /2 /3 y LCR: 80.4%/69.0%/67.7%, respectively	NA
l Res Int. 2014;2	2014:52169)1				H DZL		

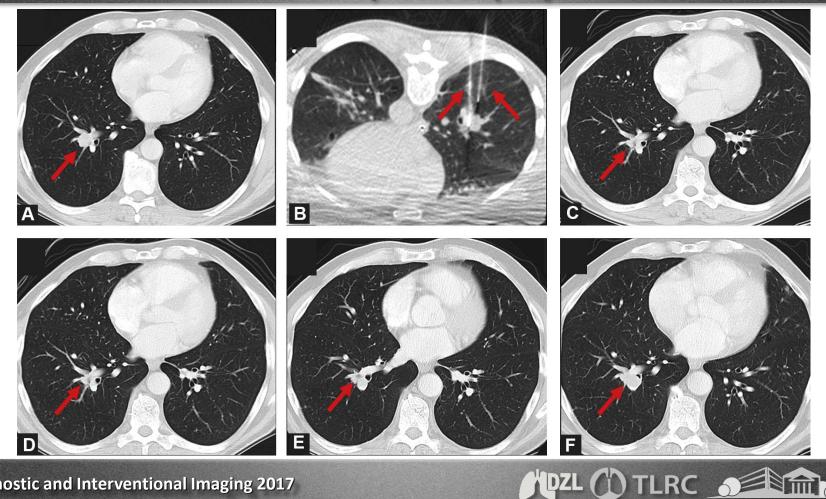
Biomed Res Int. 2014;2014:521691

Table 1 Cha	Characteristics of the different ablation techniques.							
	Ablation technique Ablation effect		Treatment effect					
			Lung tumors	Liver tumors	Kidney tumors	Bone tumors		
RFA	Application of a high-frequency oscillating electric field	Resistive heating surrounding the electrode tip and tissue hyperthermia	+++	+++	+++	+++		
MWA	Application of a propagating electromagnetic energy	Tissue hyperthermia by dielectric hysteresis	+	+++	±	+ +		
Cryoablation	Application of liquid nitrogen or argon gas	Crystal formation and osmotic shock	+ +	_	+++	+++		
IRE	Application of electric pulses	Irreversible cell membrane disruption	±	+ +	±	±		


HDZL () TLRC

RFA: radiofrequency ablation; MWA: microwave ablation; IRE: irreversible electroporation.

Diagn Interv Imaging. 2017; 98(9):609-617

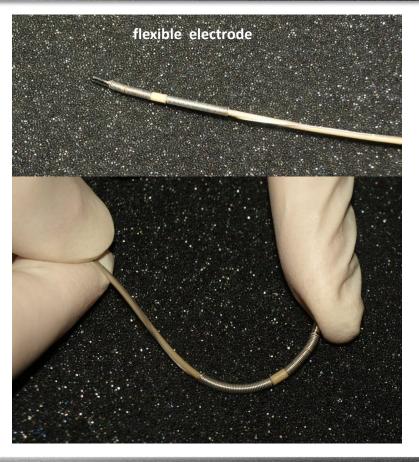

Nanoknife - Irreversible Electroporation (IRE)

HDZL () TLRC

Nanoknife - Irreversible Electroporation (IRE)

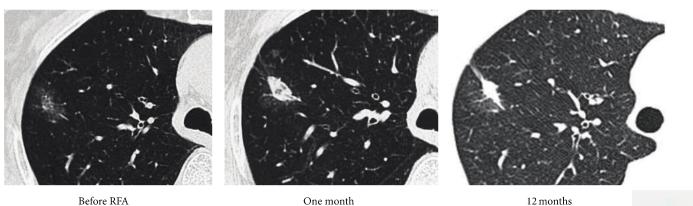
Diagnostic and Interventional Imaging 2017

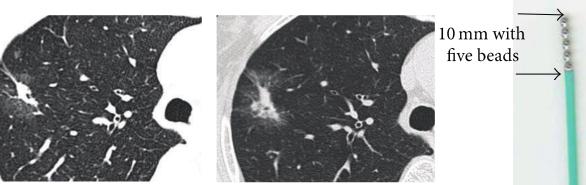
Broncoscoipoic RFA Electrode and Device Types


MUZL () TLRC

	10 patients T1N0M0				
3 different RFA probes		Length of Tip, mm	Size of Tumor, mm (Area of Tumor, mm ²)	Size of RFA Lesion, mm (Area of RFA Lesion, mm ²)	
		5	20×5 (78.5)	5×1 [10.2)	
		5	$30 \times 15 (353.3)$	$15 \times 2 (17.3)$	
	Endoscopic RFA	5	16×10 (125.6)	$10 \times 5 (33.6)$	
		8	$23 \times 15 (270.8)$	$11 \times 9 (105.6)$	
	followed	8	25×20 (392.5)	12×5 (46.2)	
	by VATS	8	10×10 (78.5)	8×8 (49.0)	
	by the	10	28×20 (439.6)	16×12 (188.8)	
		10	$21 \times 15 (247.3)$	$13 \times 8 (57.6)$	
		10	$16 \times 11 (138.2)$	14×9 (78.5)	
		10	14×10 (145.1)	12×10 (126.9)	
	effectivness				

Tanabe T et al., Chest 2010


Flexible RFA probe



Clinical Experience of Bronchoscopy-Guided Radiofrequency Ablation

Before RFA

48 months

60 months

DZL () TLRC

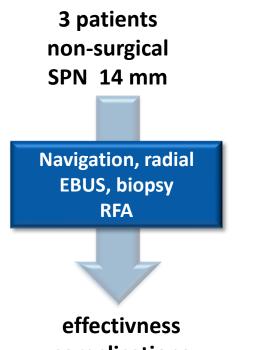
Koizumi et al., Case Reports in Oncological Medicine 2013

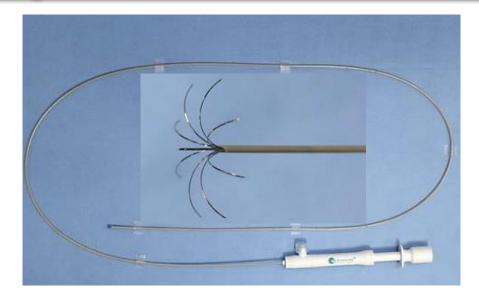
Bronchoscopy-Guided Radiofrequency Ablation

Case	Response	Relapse to initial RFA	Time of retry, months	PFI, months	OS, months	Outcome	Other therapies after RFA
1	PR	+	64	60	87	alive	retry
2	SD	+	40	35	93	alive	retry
2 3 4 5	SD	+	21	17	73	alive	retry, SBRT
4	PR	+	26	20	65	alive	retry
5	PD	+	13, 19	6	40.5	dead (lung cancer)	retry
6	PR			34	34	dead (pneumonia)	•
7	SD	+		35	50	dead (lung cancer)	
8	PR	+		55	79.5	alive	RT
9	PR	+		60	71	alive	
10	PD	+		4	27.5	dead (lung cancer)	SBRT
11	PR			65.5	65.5	alive	
12	SD			23	23	dead (other malignancy)	
13	PR	+		19.5	30.5	alive	RT
14	SD			30	30	alive	
15	SD			25.5	25.5	alive	BRT for another lesion
16	SD			24	24	alive	
17	PR			23.5	23.5	alive	
18	PR			23	23	alive	
19	PD			3	5	dead (pneumonia)	
	PD			3		1	
20	SD	+		24	71	alive	chemotherapy
	PR			71	-		-17
	PR	+		24			

PR = Partial response; SD = stable disease; PD = progressive disease; retry = repeat therapy; BRT = body radiation therapy; RT = standard radiation therapy.

Response rate 47.8% Local progression in 12 lesions

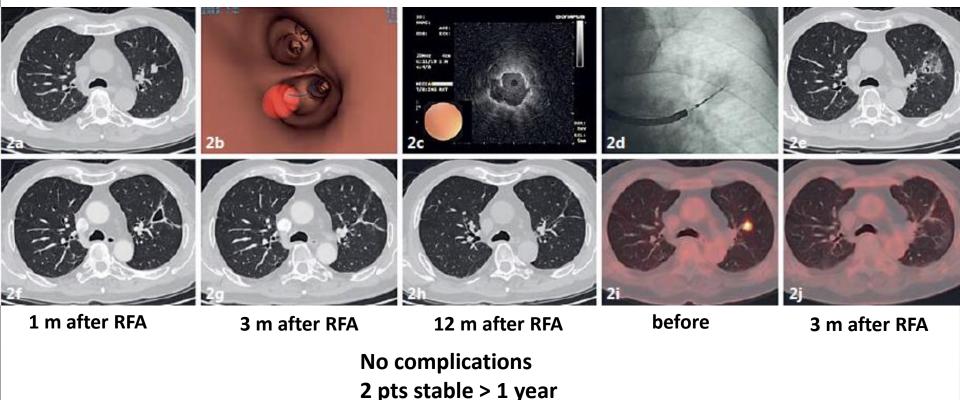

Local tumour control 82.6% Retreatment in 5 lesions


"DZL

TLRC

Koizumi et al., Respiration 2015

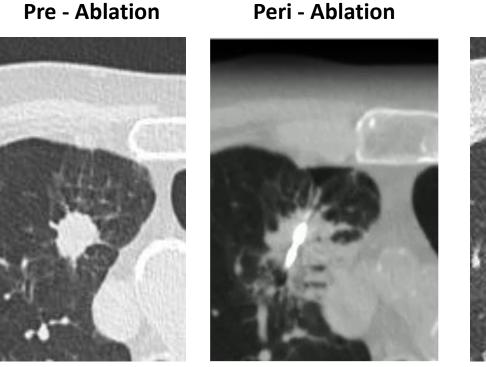
Radiofrequency Ablation for Nonsurgical SPN


HDZL () TLRC

complications

Xie F et al., Respiration 2017 epub ahead

Radiofrequency Ablation for Nonsurgical SPN


before

DZL () TLRC

Xie F et al., Respiration 2017 epub ahead

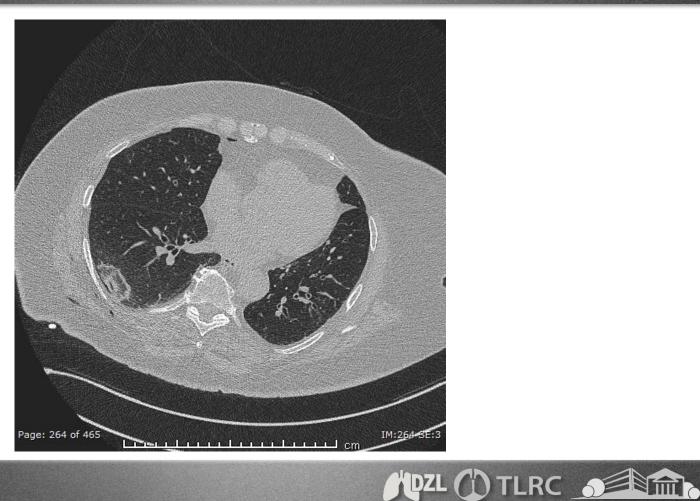
Ablation of Lung Tumors (in-vivo)

Post - Ablation

MDZL () TLRC

Respiration 2017

RF without Cryo (Ø ≈ 1.5 cm) RF with Cryo (Ø ≈ 3.6 cm)


MDZL () TLRC 5

Microwave Ablation

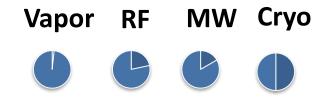
http://www.neuwavemedical.com

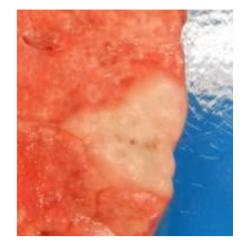
Microwave Ablation

unpublished data

Advantages of Thermal Vapor Ablation for Lung Lesions (TVA-LL)

Faster


- Other modalities 10-30 min
- Vapor 10 seconds

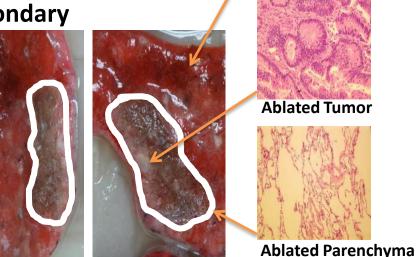

Easier/Safer

- No pleura or parenchyma puncture
- Reduced accuracy requirement
- Treat from airway, easy for bronchoscopist

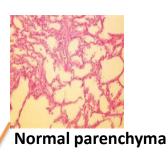
Compatible

- All peripheral navigation techniques
- Treat as part of biopsy procedure

Efficacy in the survival animals

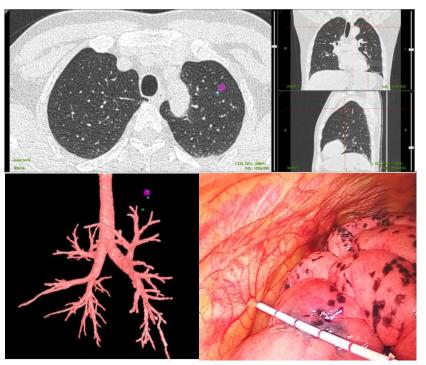


MOZL () TLRC


Am J Respir Crit Care Med 191;2015:A3722


Vapor treatment and immediate resection results:

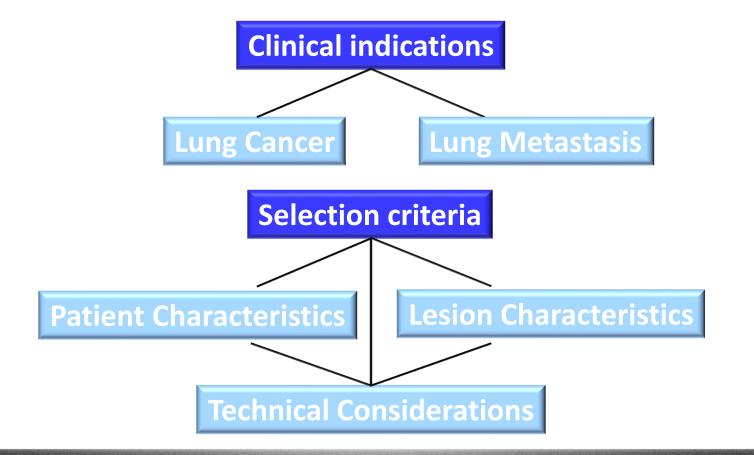
- "uniform ablation zone"
- "carcinoma 90% immediate ablation ... 80% surrounded"
- "focal thermal blood coagulation occlusion"
- Excellent chance of complete kill after secondary pathway effects (3 days later)


DZL () TLRC



Small Nodule Localization

Dye Marking


Fiducial and Surgical Marker

Local Ablation Considerations

- SPN present an increasing problem
- Classical TBBx technology is suboptimal
- New "guidance"-techniques are necessary /available
- Combination provides the best yield
- Better endoscopic access opens field of endoscopic therapies

TLRC