

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Conference on Lung Cancer September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

Understanding the Rationale for Combining IO Agents

Presented by: Edward B. Garon; David Geffen School of Medicine at UCLA; USA

CheckMate 032: Nivolumab ± Ipilimumab in Advanced SCLC OS – Non-Randomized Cohort

^aBetween first dose and database lock; follow-up shorter for patients who died

CheckMate 032: Nivolumab ± Ipilimumab in Advanced SCLC 3-month PFS^a and OS Rates

Minimum follow-up time was 12 weeks at the time of database lock

Hellman MD et al. ASCO 2017

Error bars indicate 95% CIs; ^aPer BICR; PFS = progression-free survival

IASLC----

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

Presented by: Edward B. Garon; David Geffen School of Medicine at UCLA; USA Hellman, MD et al. N Engl J Med 2018

Nivolumab (n = 391)

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

Figure S7. Treatment-Related Select Adverse Events^a by Category With Nivolumab Plus Ipilimumab

Grade

1/2 3/4

^aSelect adverse events are those with potential immunologic etiology that require frequent monitoring/intervention

40

30

21

nt (%)

vith 20

atients

10

SKIN

ndocine

IASLC--++

18

40

30

20

0

Skin

Endoctine

ointestinal

an event (%)

Patients with

34

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

Nivolumab + ipilimumab (n = 576)

15

Figure S6. Progression-free Survival With Nivolumab Plus Ipilimumab Versus Nivolumab

Monotherapy and Chemotherapy^a in Patients With TMB ≥ 10 Mutations/Mb and $\geq 1\%$

Tumor PD-L1 Expression

^aHR (95% CI) = 0.62 (0.44, 0.88) for nivolumab + ipilimumab versus chemotherapy

Presented by: Edward B. Garon; David Geffen School of Medicine at UCLA; USAHellman, MD et al. N Engl J Med 2018

rointestinal

Hepatic

Imonary

Renal

CheckMate 012: Study Design (A-D) 🏙

- Stage IIIB or IV NSCLC
- Chemotherapy-naïve
- Prior EGFR TKI therapy allowed in patients with EGFR mutations

N = 56

Nivolumab 5 or 10 mg/kg IV Q3W + Histology-based platinum-doublet chemotherapy (four 21-day cycles)^a Continue nivolumab monotherapy until disease progression or unacceptable toxicity^b

Primary objective: safety and tolerability Secondary objectives: ORR and PFS rate at 24 weeks Exploratory objective: OS

- Results based on a minimum survival follow-up of ~27 months were previously reported^{1,c}
- This update is based on a minimum survival follow-up of ~45 months^d

^aIncludes 15 patients treated with nivolumab 10 mg/kg + pemetrexed 500 mg/m² and cisplatin 75 mg/m² on day 1 of each cycle, 15 patients treated with nivolumab 10 mg/kg + paclitaxel 200 mg/m² and carboplatin (AUC 6) on day 1 of each cycle, 14 patients treated with nivolumab 5 mg/kg + paclitaxel 200 mg/m² and carboplatin (AUC 6) on day 1 of each cycle, 14 patients treated with nivolumab 5 mg/kg + paclitaxel 200 mg/m² and carboplatin (AUC 6) on day 1 of each cycle, 14 patients treated with nivolumab 5 mg/kg + paclitaxel 200 mg/m² and carboplatin (AUC 6) on day 1 of each cycle, and 12 patients treated with nivolumab 10 mg/kg + gemcitabine 1250 mg/m² (days 1 and 8 of each cycle) and cisplatin 75 mg/m² (day 1 of each cycle); ^bPemetrexed maintenance was not allowed; ^cMarch 2015 database lock for OS; September 2014 database lock for other endpoints; ^dSeptember 2016 database lock. AUC = area under the curve; NSCLC = non-small cell lung cancer; ORR = objective response rate; OS = overall survival; PFS = progression-free survival

Rizvi NA, et al. J Clin Oncol 2016;34:2969-2979.

CheckMate-012: 3 Year Estimate of OS

3-year KM estimates of OS rates by chemotherapy regimen: nivolumab + pemetrexed-cisplatin (non-SQ only), 27%; nivolumab + paclitaxel-carboplatin (any histology), 32%; nivolumab + gemcitabine-cisplatin (SQ only), 8%

^aBetween 2 and 3 years, there were 6 deaths due to disease and 1 patient was censored due to loss to follow-up; KM = Kaplan-Meier

Juergens, RA et al. WCLC 2017

KEYNOTE-189: Study Design

^aPercentage of tumor cells with membranous PD-L1 staining assessed using PD-L1 IHC 22C3 pharmaDX assay. ^aPatients could crossover during the induction or maintenance phases. To be eligible for crossover, PD must have been verified by blinded, independent central radiologic review and all safety criteria had to be met. WCLC 2018

UC, area under the plasma drug concentration-time curve; ECOG PS, Eastern Cooperative Oncology Group Performance Status; PD, progressive disease; TPS, tumor proportion score; Q3W, ever Gandhi L, et al. AACR 2018, Abstract CT075.

KEYNOTE-189: OS and PFS

Overall Survival

	Events	HR (95% CI)	Р
Pembro/Pem/Plat	31.0%	0.49 (0.38-0.64)	<0.00001
Pembro/Pem/Plat	52.4%		

Progression-free Survival

KEYNOTE-189: OS by PD-L1 status

Gandhi L, et al. AACR 2018, Abstract CT075.

IMpower 132: Study Design

- Secondary endpoints: INV-assessed ORR and DOR, PRO and safety measures
- Exploratory analyses: clinical and biomarker subgroup analyses Biomarker-evaluable tissue not mandatory for enrolment (was available from 60% of patients)

DOR, duration of response: INV, investigator; R, randomization; ORR, objective response rate; OS, overall survival; PD, progressive disease, PFS, progression-free survival; PRO, patient-reported outcomes. ^a Atezolizumab: 1200 mg IV g3w; Carboplatin: AUC 6 mg/mL/min IV g3w; Cisplatin: 75 mg/m² IV g3w; Pemetrexed: 500 mg/m² IV g3w. NCT02657434. Data cutoff: May 22, 2018

Papadimitrakopoulou, VA et al. WCLC 2018 IMpower132: Efficacy & Safety

IMpower 132: OS (interim) and PFS

Papadimitrakopoulou, VA et al. WCLC 2018

IMpower 132: PFS by PD-L1 status

The principal question is to assess whether the addition of Atezolizumab to Arm C provides clinical benefit

*Patients with a sensitizing *EGFR* mutation or *ALK* translocation must have disease progression or intolerance of treatment with one or more approved targeted therapies. †Atezolizumab: 1200 mg IV every 3 weeks. ‡Carboplatin: AUC 6 IV every 3 weeks. [¶]Paclitaxel: 200 mg/m² IV every 3 weeks. §Bevacizumab: 15 mg/kg IV every 3 weeks. IHC, immunohistochemistry; PD, progressive disease; RECIST, Response Evaluation Criteria In Solid Tumors

Socinski MA, et al. ASCO 2018, Abstract 9002.

IMpower 150: OS in WT population

	ARM A: SEP atezo	
Landmark OS, %	+ CP	+ CP
12-month	65%	61%
18-month	51%	41%
24-month	39%	34%

HRª, 088 (95% CI: 0.72, 1.08 *P* = 0.2041 Median follow-up: ~20 mo

Atezo, Atezolizumab; Bev, Bevacizumab; CP, Carboplatin+ Paclitaxel; WT, wild type

Socinski M et al. ASCO Annual Meeting 2018, Abstract 9002; Socinski M et al. N Engl J Med. 2018 ;378(24):2288-2301

	ARM B: SEP atezo	ARM C:see bev
Landmark OS, %	+ bev + CP	+ CP
12-month	67%	61%
18-month	53%	41%
24-month	43%	34%

HR^a, 0.78 (95% CI: 0.64, 0.96 *P* = 0.0164 *Median follow-up:* ~ 20 mo

IMpower 150: OS by PD-L1 status

PD-L1-High TC3 or IC3

20

Atezo, Atezolizumab; Bev, Bevacizumab; CP, Carboplatin+ Paclitaxel; TC, tumour cell; IC, immune cell

Socinski M et al. ASCO Annual Meeting 2018, Abstract 9002; Socinski M et al. N Engl J Med. 2018 :378(24):2288-2301

IMpower 150: EGFR/ALK mutations

Atezo, Atezolizumab; Bev, Bevacizumab; CP, Carboplatin+ Paclitaxel.

Socinski M et al. ASCO Annual Meeting 2018, Abstract 9002; Socinski M et al. N Engl J Med. 2018 :378(24):2288-2301

Arm A vs Arm C

No. at risk Atezo+CP53 51 50 48 46 41 37 24 22 20 16 13 8 6 4 Bev+CP63 61 57 49 46 39 37 28 24 17 12 11 7 2

KEYNOTE-407: Study Design

Paz-Ares L, et al. ASCO 2018. Abstract 105.

KEYNOTE-407: OS (interim) and PFS 🌌

Overall Survival

		HR (95%		
	Events	CI)	P	
^D embro + Chemo	30.6%	0.64	0.0008	
Placebo + Chemo	42.7%	(0.49-0.85)		

	Events	HR (95% CI)	Р	
Pembro + Chemo	54.7%	0.56	<0.0001	
Placebo + Chemo	70.1%	(0.45-0.70)		

Paz-Ares L, et al. ASCO 2018. Abstract 105.

KEYNOTE-407: OS by PD-L1 status

Paz-Ares L, et al. ASCO 2018. Abstract 105.

IMpower 131: Study Design

20

Atezolizumab 1200 mg IV q3w; carboplatin AUC 6 IV q3w; nab-paclitaxel 100 mg/m² IV qw; paclitaxel 200 mg/m² IV q3w. ^a Patients with a sensitising *EGFR* mutation or *ALK* translocation must have disease progression or intolerance to treatment with \geq 1 approved targeted therapies. Testing for *EGFR* mutation or *ALK* translocation was not mandatory.^b PD-L1 expression was evaluated using the VENTANA SP142 IHC assay.

Jotte, R. et al ASCO Annual Meeting 2018

IMpower 131: OS (interim) and PFS

Overall Survival (interim)

	Arm B: Atezo + CnP	Arm C: CnP	
Median OS	14.0	13.9	
(95% CI), mo	(12.0, 17.0)	(12.3, 16.4)	
HRª (95% CI)	0.96 (0.78, 1.18)		
<i>P</i> value	0.6931		

Progression-free Survival

	Arm B: Atezo + CnP	Arm C: CnP
Median PFS	6.3	5.6
(95% CI), mo	(5.7, 7.1)	(5.5, 5.7)
HRª (95% CI)	0.71 (0.6	60, 0.85)
<i>P</i> value	0.0	001

Jotte, R. et al ASCO Annual Meeting 2018

IMpower 131: OS by PD-L1 status

Jotte, R. et al ASCO Annual Meeting 2018

CheckMate 227: Study Design

 Co-primary endpoints: OS in PD-L1-selected populations and PFS^c in TMB-selected populations treated with nivolumab + ipilimumab vs chemotherapy

^aNSQ: pemetrexed + cisplatin or carboplatin, Q3W for ≤4 cycles, with optional pemetrexed maintenance following chemotherapy or nivolumab + pemetrexed maintenance following nivolumab + chemotherapy; SQ: gemcitabine + cisplatin, or gemcitabine + carboplatin, Q3W for ≤4 cycles; ^bOne patient was randomized with <1% tumor PD-L1 expression in IVRS, but was subsequently found to have ≥1% tumor PD-L1 expression; ^cPer BICR

WCLC 2018

Borghaei, H. et al ASCO Annual Meeting 2018

CheckMate 227: PFS in PD-L1 neg

201

All Randomized Patients (Squamous and Non-squamous)

^a95% CI: nivo + chemo (4.6, 6.7 mo), chemo (4.3, 5.6 mo); ^bIn the nivo + ipi arm (n = 187), median (95% CI) PFS was 4.4 (3.1, 6.0), 1-y PFS was 29%, and HR vs chemo was 0.79 (0.62, 1.01)

Borghaei, H. et al ASCO Annual Meeting 2018

CheckMate 227: PFS in PD-L1 neg by TMB

Chemo

(n = 59)

4.7

21

0

0

TMB <10 mut/Mb and <1% Tumor PD-L1 Expression TMB ≥10 mut/Mb and <1% Tumor PD-L1 Expression Nivo + chemo Chemo Nivo + chemo (n = 54)(n = 43)(n = 48)100 9 100 Median PFS,^b mo Median PFS.ª mo 6.2 5.3 4.7 HR 0.56 HR 0.87 80 80 (95% CI) (0.35, 0.91)(95% CI) (0.57, 1.33)PFS (%) 60 60 40 40 1-v PFS = 27% 1-y PFS = 18% Nivolumab + Nivolumab + 1-v PFS = 16% 20 chemotherapy 20 chemotherapy 1-v PFS = 8%Chemotherapy Chemotherapy 0 0 15 15 0 3 6 9 12 18 21 0 3 6 9 12 18 Months Months No. at risk No. at risk Nivo + chemo 43 36 21 14 0 Nivo + chemo 54 38 19 13 16 0 16 6 3 30 4 59 39 6 Chemo 48 Chemo

- TMB \geq 10 mut/Mb: ORR was 60.5% with nivo + chemo and 20.8% with chemo ٠
- TMB <10 mut/Mb: ORR was 27.8% with nivo + chemo and 22.0% with chemo •

^a95% CI: nivo + chemo (4.3, 9.1 mo), chemo (4.0, 6.8 mo); ^b95% CI: nivo + chemo (4.2, 6.9 mo), chemo (3.9, 6.2 mo)

Borghaei, H. et al ASCO Annual Meeting 2018

CCTG IND 226: Plt doublet + PD-L1 and CTLA-4

Hao, D, Juergens, RA et al. WCLC 2017

Conclusions

- PD-(L)1 inhibitors plus chemotherapy offer additive benefits when combined with chemotherapy
- The durability of the benefit is yet to be defined and requires further long term follow up
- The side effect profile is manageable with no obvious amplification or suppression of IO or chemotherapy classic toxicities
- The influence of PD-L1 tumour status on PFS and OS is still an open question with discrepant results between trials
- Better biomarkers are needed to help identify which patients would benefit from the combination of chemotherapy and immune checkpoint inhibitors

IASLC----

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Conference on Lung Cancer <u>September 23</u>–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

Why combining IO and RT in the advanced NSCLC setting?

- Poor survival <5% for stage IIIB/IV disease
- IO SOC in first and second-line treatment for advanced NSCLC
- RT induces immunomodulatory effects in the local tumour microenvironment,
 - Some (*but limited*) clinical evidence that RT not only provides local tumour control, but also influences systemic control
 - Supporting a synergistic combination approach with IO to improve systemic control
- Potential for RT to overcome resistance to immune checkpoint blockade
- →making tumours 'sensitive again' to IO

IASLC----

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

*

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

Immunogenic effects of radiotherapy

RT enhances immune recognition of tumour

- Promotes the release of tumour neoantigens
- Enhances MHC class I expression
- Upregulates chemokines & cell-adhesion molecules
- Promotes dentritic cell activation
- Promotes antigen processing/ presentation
- Promotes priming of CD8+ T-cells

In theory, this should lead to an abscopal effect

IASLC-+-

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

WCLC2018.IASLC.ORG

However.... immunosuppression dominates...

All tumour sites Including micrometastasis

#WCLC2018

*

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

WCLC2018.IASLC.ORG

#WCLC2018

The abscopal effect

Does the combination of RT/IO provide an opportunity to boost abscopal response rates?

Siva et al Cancer Letters 2015

IASLC-++

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

Abscopal effect of RT and IO - Clinical data

Pub. Year	%0 0²	Age	Histology	Primary site	Treatment of primary	RT treated sites	Treatment + RT Dose / fractions	Non- irradiated abscopal regression	Time until abscopal response	PFS after response*
2014	м	74	Adenocarci- noma	Lung	Resection	Supraclavi- cular LN	BCG- vaccine 58 Gy/29x	Lung M+	6 m	47 m
2013	м	64	Adenocarci- noma	Lung	CT (PD)	Hepatic M+	lpilimumab 30 Gy/5x	Liver M+ / Bone M+ / Lung M+	3 m	5 m
2012	м	57	Melanoma	Arm	Wide excision / axillary dissection	Hepatic M+	Ipilimumab 54Gy/3x	Cutaneous M+	6 m	6 m
2012	м	67	Melanoma	Scalp	CT (PD)	Brain M+	Ipilimumab SRT**	Nodal M+	NR	NR
2012	F	33	Melanoma	Upper back	Wide excision	Paraspinal M+	Ipilimumab 28,5 Gy/3x	Splenic M+ / hilar LN	4 m	6 m

Reynders et al. Cancer Treat Rev 2015

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

> WCLC2018.IASLC.ORG

#WCLC2018

The promise of SBRT & IO

In situ vaccination with SABR to 'warm' tumour and enhance effect of immunotherapy

IASLC--+-

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Conference on Lung Cancer September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

Randomized phase II study of pembrolizumab after SBRT versus pembrolizumab alone in patients with advanced non-small cell lung cancer: The PEMBRO-RT study

Study objective: To investigate the efficacy and safety of pembrolizumab after SBRT compared with pembrolizumab alone in patients with advanced NSCLC

SBRT to a single tumour site 3x 8 Gy within 7 days prior to 1st cycle of Pembrolizumab 200 mg q3w Key patient inclusion criteria (n=38) Advanced NSCLC R >2L therapy Stratification :1 Smoking status Any PD-L1 status (n=74) Pembrolizumab 200 mg q3w (n=40)**Primary endpoint** Secondary endpoints ORR PFS, OS, DCR, safety

IASLC---

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

> WCLC2018.IASLC.ORG

#WCLC2018

IASLC---

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

	Pembrolizumab + SBRT (n=36)	Pembrolizumab (n=36)
Best overall response, n (%)		
Complete response	3 (12)	1 (3)
Partial response	14 (39)	7 (19)
Stable disease	9 (25)	9 (25)
Progressive disease	10 (28)	19 (53)
ORR at 12 weeks, % (n/N)		
Overall*	39 (13/36)	21 (7/34)
PD-L1 0%	22 (4/18)	5 (1/22)
PD-L1 1–49%	38 (3/8)	38 (3/8)
PD-L1 ≥50%	60 (6/10)	75 (3/4)
DCR at 12 weeks	64 (23/36)	42 (15/36)

Conclusion: In patients with advanced NSCLC, SBRT given prior to pembrolizumab may improve outcomes predominantly in patients with PD-L1 negative tumours

IASLC 19th World Conference on Lung Cancer September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

Secondary analysis of KEYNOTE 001

- International, multicentre, phase 1 trial of single agent pembrolizumab in patients with progressive locally advanced or metastatic NSCLC
- Pembrolizumab IV at dose of 2mg/kg or 10mg/kg every 3 weeks or 10mg/kg every 2 weeks until disease progression/death/withdrawal of study
- Assessed patients treated on KEYNOTE-001 trial at a single institution
- Primary objective- to determine whether previous radiotherapy affected PFS, OS and pulmonary toxicity

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

Secondary analysis of KEYNOTE 001

- 98 patients were enrolled, one was lost to follow up
- 42 (43%) of 97 patients have previous RT for treatment of NSCLC before first cycle of pembroluzimab
- 38 (39%) received extracranial RT
- PFS with pembrolizumab was significantly longer in patients who received any RT than without; 4.4 months vs. 2.1 months (HR 0.56, p=0.019)
- OS was also significantly longer in previous RT arm 10.7 months vs. 5.3 months (HR 0.58, p=0.026)
- OS in patients who previously received extracranial RT compared to those without; 11.6 months vs 5.3 months (HR 0.59, p=0.034)

IASLC--+-

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

*

IASLC 19th World Confe September 23–26, 2018 Toron

WCLC2018.IASLC.ORG

What is the optimal RT schedule to elicit an immune response?

Dose per fraction?

- Immunogenic cell death may be increased with dose higher than 2 Gy?
- Preclinical studies suggest 8-12 Gy may be optimal?

Number of fractions?

- Multiple may be better than single?
- Clinical abscopal effects mainly observed following 3-5 fractions
- Protracted RT courses may induce more lymphopenia?

Frequency of fractions?

 Is daily or alternate day or weekly fractionation optimal? **Conventional Fractionation**

SBRT Fractionation

Weekly Fractionation

IASLC-+-

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Confer September 23–26, 2018 Toron

WCLC2018.IASLC.ORG

What is the optimal sequencing of RT & IO to elicit an immune response?

Preclinical evidence: concurrent (Dovedi et al Cancer Res 2014) Sequential / Concurrent ?

- Abscopal responses occur when RT given concurrently with or following IO?
- RT with first IO cycle vs later IO cycle?

Concurrent RT + anti-PD-L1 is superior to sequential therapy

The Christie

IASLC-++

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Conference on Lung Cancer September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

What is the optimal RT target to improve outcomes?

Radiotherapy target site?

- Primary vs metastases Clonal vs sub-clonal neoantigens?
- Single vs multiple targets?

Radiotherapy target coverage?

• Is it necessary to treat the whole of a lesion?

Radiotherapy field size?

- Large RT volumes may cover more lymphoid tissue & induce more lymphopenia
- Circulating lymphocytes highly sensitive to RT (D90 = 0.5 Gy)

Lymph Node Tumour Cell Lymphocyte Blood Vessel

IASLC-----

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASLC 19th World Confer September 23–26, 2018 Toron

> WCLC2018.IASLC.ORG

How do we select the patients who will benefit from addition of RT to IO?

- Overall tumour burden?
- Prior treatment?
- Initial response to IO alone?
- Imaging biomarkers?
- Gut biomarkers e.g. Microbiome?
- Blood biomarkers e.g. Myelosuppression / neutrophil to lymphocyte ratio?
- Tissue biomarkers e.g. PDL1 / Mutational burden / Neoantigen load / TILs?

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

Ongoing clinical trials

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

Palliative thoracic RT with IO

PEAR: Pembrolizumab and Palliative RT for Advanced NSCLC

Primary endpoint: Toxicity Target 21 patients

Royal Marsden NCT03245177

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

IO RT in Oligo-Metastatic Disease

IASLC-++

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER SBRT with IO in Oligo & Poly-Metastatic Disease

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

> WCLC2018.IASLC.ORG

#WCLC2018

IASLC 19th World Conference on Lung Cancer September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

Trials of immune checkpoint inhibitors & SBRT in advanced NSCLC

NCT	ΙΟ	Radiotherapy	Trial phase	Institution
NCT02239900	lpilumumab	SBRT 50 Gy 4# 1-4 lesions cycle 1 vs 3	Phase I/II	MDACC
NCT02608385	Pembrolizumab	SBRT 3-5# varied total dose depending on site	Phase I	Chicago
NCT02400814	Atezolizumab	SBRT 50 Gy 5# pre vs cycle 1 vs cycle 3	Phase I	California
NCT02444741	Pembrolizumab	SBRT 50 Gy 4# vs wide field RT 45 Gy 15# cycle 1 vs 3	Phase I/II	MDACC
NCT02407171	Pembrolizumab	SBRT 1-5# (8 Gy 1#, 30 Gy 5#, 30 Gy 3#)	Phase I/II	Yale
NCT02492568	Pembrolizumab	SBRT 24 Gy 3# pre vs Pembrolizumab alone	Phase II	NKI

Ko et al. Clinical Ca Res 2018

IASLC 19th World Conference on Lung Cancer September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

#WCLC2018

Can we be more efficient with trial design?

Platforn	Drug A) u	Drug B U	rella	•••	ial D	esign
Type 1						
Type 2						
:						
Type N						
:						

- Master Protocol
- Multiple treatments
- · Can adaptively add/drop treatments

Saville. Clinical trials 2016

TAKE HOME MESSAGES

- RT in combination with IO is a promising strategy in cancer treatment
- Number of RT-IO clinical trials is rapidly increasing
- However optimal partnering with IOs to maximise this effect is unclear
- Questions remains to be answered:
 - Optimal dose and fractionation to ensure adequate priming for IO
 - Sequencing of therapies
 - The extent of tumour that should be irradiated while minimizing local toxicity
 - Best trial endpoints to use (e.g. ?iRECIST and duration of repsonse vs. PFS/RECIST criteria)

IASLC 19th World Conference on Lung Cancer

September 23–26, 2018 Toronto, Canada

WCLC2018.IASLC.ORG

Tumors with High Mutation Burden are Rational Target for IO Therapy

Schumacher TN et al Science 2015;348:69-74 Kim JM et al Ann Oncol 2016:1492-1504 Liontos M et al Ann Tran 4 med 2016:264 Sharma P et al Science 2015:56-61 Giannakis M et al Cell Rep 2016:857-865

High Tumor Mutation Burden as Predictive biomarker for IO Therapy

Snyder A et al NEJM 2014;371:2189-99 Rizyi NA et al Science 2015;348:124-8 Let DT et al NEJM 2015;372:2509-20 Van Allen EM et al Science 2015;350:207-211 Hugo W et al Cell 2016;155:35-44 Carbone DP et al NEJM 2017;376:2415-26 Hellman et al Cancer Cell 2018

No association between TMB and PDL1 expression CheckMate 026 TMB Analysis: Nivolumab in First-line NSCLC

• There was no association between TMB and PD-L1 expression in patients with ≥1% PD-L1 tumor expression

TMB and PDL1 Expression Identify Distinct and Independent Populations of NSCLC

- 58% all randomized patients (n=1004) had TMB-evaluable samples
- Among them, 44% of patients have ≥ 10 mut/Mb

³Symbols (dots) in the scatterplot may represent multiple data points, especially for patients with <1% tumor PD-L1 expression. The black line shows the relationship between TMB and PD-L1 expression as described by a linear regression model; ^bAmong patients in the nivolumab +ipilimumab and chemotherapy arms; TMB ≥10 mut/Mb, n = 299; TMB <10 mut/Mb, n = 380

PFS in All Randomized vs TMB-Evaluable Patients

Hellman AACR, 2018

Patients who did not progress or die were censored on the date of their last evaluable tumor assessment; those who did not have any study tumor assessments and did not die were censored on their date of randomization

Co-primary Endpoint: PFS With Nivolumab + Ipilimumab vs Chemotherapy in Patients With High TMB (≥10 mut/Mb)^a

In patients with TMB <10 mut/Mb treated with nivo + ipi vs chemo, the HR was 1.07 (95% CI: 0.84, 1.35)^d

Per blinded independent central review (BICR); median (range) of follow-up in the co-primary analysis population was 13.6 mg (0.4, 25.1) for nivo + ipi and 13.2 mg (0.2, 26.0) for chemo; ¹⁰5% CI: nivo + ipi (5.5, 13.2 mo), chemo (4.4, 5.8 mo); ⁹5% CI: 0.43, 0.77 mo; ^oThe *P*-value for the treatment interaction was 0.0018

PFS: Nivolumab + Ipilimumab vs Nivolumab in Patients With High TMB (≥10 mut/Mb) and ≥1% PD-L1 Expression

CheckMate 227: Nivo + Ipi in 1L NSCLC With High TMB (≥10 mut/Mb)

PFS in Patients With High TMB (≥10 mut/Mb) by Tumor PD-L1 Expression

^a95% Cl: nivo + ipi (5.5, 13.5 mo), chemo (4.3, 6.6 mo); ^b95% Cl: nivo + ipi (2.7 mo, NR), chemo (4.0, 6.8 mo)

62

CheckMate 227: Nivo + Ipi in 1L NSCLC With High TMB (≥10 mut/Mb)

Preliminary Overall Survival With Nivolumab + Ipilimumab vs Chemotherapy in Patients With High TMB (≥10 mut/Mb)

- Database lock: March 15, 2018; minimum follow-up: 14.2 months; 53% of patients were censored
- In the chemotherapy arm, 31.3% received subsequent immunotherapy (38.3% among those with disease progression^c)

In the first 1.5 months, 8 deaths occurred in the <u>nivo</u> + <u>ipi</u> arm (4 due to disease progression; 1 patient never treated [respiratory sepsis]; 2 due to AEs unrelated to study drug per investigator [thromboembolism, septic shock]; 1 due to myocarditis related to study drug), and 2 deaths occurred in the chemo arm (1 due to disease progression; 1 due to multiple brain infarctions related to carboplatin); ⁹⁵% CI: nivo + <u>ipi</u> (16.5 mo, NR), chemo (12.6 mo, NR); cherinvestigator

IO Mon vs IO/Chemotherapy vs IO/IO Combo

Study	Patients	Regimen	PFS (mons)	1yr OS (%)
KEYNOTE 024	NSCLC	Pembrolizumab (TPS ≥ 50%)	10.3	70%
KEYNOTE 042	NSCLC	Pembrolizumab (TPS ≥ 50%)	7.1	66%
KEYNOTE189	ADC	Carbo/Pem/Pembrolizumab	8.8	69.2%
IMpower 150	ADC	Carbo/Pacli/Beva/Atezolizumab	8.3	67%
KEYNOTE 407	SCC	Carbo/Pacli/Pembrolizumab	6.4	63%
IMpower 131	SCC	Carbo/nab-pacli/Atezolizumab	6.3	56.9%
IMpower132	ADC	Carbo/pem/Atezolizumab	7.6	59.6%
CheckMate 227	NSCLC	Ipilimumab/Nivolumab(TMB≥10)	7.2	67%

Which Regimen in High PDL1 expression ?

Which Regimen in Low PDL1 expression ?

Safety Summary of Treatment-Related AEs

	Nivolumab + chemotherapy (n = 172)		Nivolumab + ipilimumab (n = 185)		Chemotherapy (n = 183)	
	Any grade	Grade 3–4	Any grade	Grade 3–4	Any grade	Grade 3–4
Any TRAE,ª %	92	52	74	25	77	35
TRAE leading to discontinuation, $^{\rm b}$ %	13	8	16	10	14	9
Median number of doses received, n	8.5 for nivolumab (Q3W) 4–7 for chemo (Q3W)		8.0 for nivolumab (Q2W) 3.0 for ipilimumab (Q6W)		4–7 for chemo (Q3W)	

Nivo + chemo (n = 172)

TRAEs in the chemo arm were consistent with prior reports^{1,2}

Challenges of TMB for "Patient Selection" for IO

- TMB is not ideal predictive biomarker, either
- TMB is not ready yet in clinical practice

In patients with TMB <10 mut/Mb treated with nivo + ipi vs chemo, the HR was 1.07 (95% CI: 0.84, 1.35)^d

Per blinded independent central review (BICR); median (range) of follow-up in the co-primary analysis population was 13.6 mg (0.4, 25.1) for nivo + jpi and 13.2 mg (0.2, 26.0) for chemo; *95% CI: nivo + jpi (55, 13.2 mo), chemo (4.4, 5.8 mo); %95% CI: 0.43, 0.77 mo; %The P-value for the treatment interaction was 0.0018
15

High Concordance rate between Whole Exome Sequencing vs Targeted gene panel

Frampton GM, et al. Nat Biotechnol 2013;31:1023–1031 Chalmerss wt al Gen Medicine 2017 Zehir Nat Med 2017

Challenges of TMB for "Patient Selection" for IO

- TMB is not perfect predictive biomarker
- TMB is not ready yet in clinical practice
 - Cost
 - Tissue availability
 - Turn around time (TAT)
 - No standard platform for NGS
 - Variable cut off value for TMB
 - Different gene numbers

Ongoing Clinical Trials of anti-CTLA-4 + anti PD/PDL1

Study	Ν	Design	Primary end point
MYSTIC*	675	Durvalumab + Tremelimumab Durvalumab	PFS
		Platinum doublets	
NEPTUNE	800	Durvalumab +Tremelimumab	OS
		Platinum doublets	

* Mystic did not meet the primary end point

Other IO + IO Combinations

Coinhibitory receptors

Phase 1/2 Trial of Urelumab (Anti 4-1BB) + Nivolumab

- 4-1 BB (CD1367) is an inducible costimulatory receptor expressed on activated T cell, NK cells, DC
- Previous high dose : severe hepatotoxicity
- Urelumab 3 or 8mg q 4 weeks + nivolumab 3mg/kg or 240mg iv q 2 weeks
- 46 malignant melanoma ORR 50% (50% for PDL1 + 47% PDL1 -)
- One NSCLC, one HN has response
- No significant added toxicity

Phase I/2 Trial of Varlilumab (Anti-CD27) + Nivolumab

- CD27 is a member of TNF receptor superfamily expressed on most T cells/B/NK
- CD27 activation leads cell survival, activation and proliferation
- Varlilumab is fully human IgG1 CD 27 agonist mAb
- Varlilumab 3mg/kg q 2 weeks + nivolumab 240mg q 2 weeks

Ovarian cancer

- · Expansion cohort with ovarian cancer and colon cancer was presented
- Well tolerable and no additive toxicity

Colon cancer
Phase I Trial of BMS-986156 (Anti-GITR) + nivolumab

- GITR is a costimulatory receptor upregulated on T cell activation
- Intratumoral Treg express higher levels of GITR than Teffs
- BMS 986156 is a fully human IgG1 agnosit mAb that binds to GITR
 - Incresing Teff survival and function
 - Reducing Tre-medicated supression of Teffs
 - Promoting Treg reduction through conversion to other immune cells (eg, Teffs)
- Adverse events: fever (30%), chills (16%), fatigue (14%)

Tumor Type Known to Have <u>High GITR Expression</u>: Response to BMS-986156 + Nivolumab in a Patient With Cervical Cancer

Images provided by Tarek Meniawy, Linear Clinical Research and Sir Charles Gairdner Hospital, University of Western Australia, Australia,

1. Padovani CT et al. Rev Soc Bras Med Trop. 2013;46:288-292; 2. Visser J et al. Clin Exp Immunol. 2007;150:199-209; 3. Bristol-Mvers Squibb. Data on file.

 Cervical cancer has been associated with high GITR expression¹⁻³

 Patient (44 years old) with metastatic cervical cancer had 3+ prior lines of therapy (chemotherapy ± VEGF inhibitor)

Partial response with BMS-986156 240 mg + nivolumab 240 mg

 Best change in tumor burden was −62^{ez}

Response is ong

Response After <u>Progression on Anti-PD-1</u> Therapy: BMS-986156 + Nivolumab in a Patient With Melanoma

Baseline (Jun 2016) Dec 2016

Images provided by Matteo S. Carlino, Crown Princess Mary Cancer Centre, Westmead Hospital and The University of Sydney, Australia.

- Patient (59 years old) with metastatic melanoma had 3 prior lines of therapy
 - BRAF inhibitor
 - PD-1 inhibitor (pembrolizumab [Feb to May 2014]; best response was progressive disease)
 - BRAF + MEK inhibitor
- Partial response with BMS-986156 100 mg + nivolumab 240 mg
 - Best change in tumor burden was -41%
- Duration of response at data cutoff was 24 weeks; response is still ongoing

14

Tumor Type <u>Not Typically IO Responsive</u>: Response to BMS-986156 + Nivolumab in a Patient With Adenocarcinoma of the Ampulla of Vater

mages provided by Jennifer L. Spratlin, Cross Cancer Institute, University of Alberta, Canada

- · Patient (69 years old) with adenocarcinoma of the ampulla of Vater had 3 prior lines of chemotherapy
- Partial response with BMS-986156 240 mg + nivolumab 240 mg; best change in tumor burden was -38%
 - Duration of response at data cutoff was 16 weeks; response is still ongoing

M7824, Bifunctional fusion protein targeting PD-L1 and TGF β

- TGF-β plays a role in tumor immune escape and promotes tumor progression and metastasis via immune and non-immune related processes
- M7824 is a bifunctional targeting of the TGF β and PDL1 pathway
 - TGF β neutralizing trap component: extracellular domain of human TGF-BR2, binds TGF β 1, β 2, β 3
 - Antibody component: fully human IgG1 mAb against human PDL1

M7824 in NSCLC in phase I study

Table 2. Investigator-assessed efficacy			
	500-mg Q2W n=40	1200-mg Q2W n=40	Overall N=80
Best overall response ^a , n (%)	Second and		
Complete response	0 (0)	1 (2.5)	1 (1.3)
Partial response	8 (20.0)	10 (25.0)	18 (22.5)
Stable disease	3 (7.5)	7 (17.5)	10 (12.5)
Progressive disease	22 (55.5)	21 (52.5)	43 (53.8)
Not evaluable	7 (17.5)	1 (2.5)	8 (10.0)
ORR, n/N (%)			
Alla	8/40 (20.0)	11/40 (27.5)	19/80 (23.8)
PD-L1+ (≥1%)	6/31 (19.4)	11/27 (40.7)	17/58 (29.3)
PD-L1–high (≥80%)	2/6 (33.3)	5/7 (71.4)	7/13 (53.8)
Disease control rate (DCR), n/N (%)			
Alla	11/40 (27.5)	18/40 (45.0)	29/80 (36.3)
PD-L1+ (≥1%)	9/31 (29.0)	15/27 (55.6)	24/58 (41.4)
PD-L1—high (≥80%)	2/6 (33.3)	5/7 (71.4)	7/13 (53.8)
Median PFS ^a , months (95% CI)			
All	1.4 (1.3-2.7)	2.7 (1.3-8.1)	2.1 (1.4-2.9)
PD-L1+ (≥1%)	1.6 (1.3-3.3)	6.8 (2.6-NR)	2.7 (1.6-6.8)
PD-L1—high (≥80%)	1.5 (0.2-NR)	NR (2.7–NR)	8.1 (1.4-NR)
Median OS, months (95% CI)			
All	10.9 (4.6-NR)	NR (11.8–NR)	12.2 (10.5-NR)
PD-L1+ (≥1%)	10.3 (4.5-NR)	NR (12.2-NR)	NR (10.3-NR)
PD-L1–high (≥80%)	NR (1.0-NR)	NR (9.5–NR)	NR (9.5–NR)

"Efficacy according to RECIST v1.1

Phase I/2 NKTR-214 (CD122 biased agonist) plus nivolumab

- NKTR-214 is a prodrug of conjugated IL-2 designed with sustained signaling
- Mitigation of rapid immune stimulation to achieve safe, outpatient regimen every 3 week IV dosing
- Biased signaling preferentially activates and expands effector T cells and NK cells over Tregs in the tumor microenvironment
- RP2 dose 0.006mg/kg q 3 week + nivolumab 360mg q 3 week

Conclusions

- Ipi + Nivo Combination is tolerable and more effective in pts with high TBM
- TMB is a potential predictive genomic biomarker for IO/IO combination, independent of PDL1 expression
- Further improvement for test of TMB and long-term follow-up for overall survival are needed for incorporation into clinical practice
- Many combination trials with co-stimulatory or co-inhibitory receptor are ongoing with promising in early clinical trials.
- Development of biomarker for selection of patients and investigating cancer immunology by "reverse translating" to the lab from clinical studies is needed